Cho tứ giác ABCD có góc ABC + góc ADC = 180°. Trung trực của AB và AD cắt nhau tại O. CMR: OA=OB=OC=OD.
Nhanh giúp em với ạ !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xy - 4x = 29 - 5y
<=> x(y - 4) - 29 + 5y = 0
<=> x(y - 4) + 5(y - 4) - 9 = 0
<=> (x + 5)(y - 4) = 9 = 1.9 = 3.3
Lập bảng:
x + 5 | 1 | -1 | 3 | -3 | 9 | -9 |
y - 4 | 9 | -9 | 3 | -3 | 1 | -1 |
x | -4 | -6 | -2 | -8 | 4 | -14 |
y | 13 | -5 | 7 | 1 | 5 | 3 |
\(A=x^2-x\)
\(A=x^2-x+\frac{1}{4}-\frac{1}{4}\)
\(A=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\)
Min \(A=\frac{-1}{4}\Leftrightarrow x=\frac{1}{2}\)
A=x2-x
Ta có: \(x^2\ge0\forall x\)
=> \(x^2-x\ge-x\forall x\)
Vậy MinA= -x <=> x=0
Ơ, hình như não với bài của mình đang bị lag lag đâu đó '-'?
\(4x^2+2xy+4x+y+1\)
\(=\left(4x^2+2x\right)+\left(2xy+y\right)+\left(2x+1\right)\)
\(=2x\left(2x+1\right)+y\left(2x+1\right)+\left(2x+1\right)\)
\(=\left(2x+y+1\right)\left(2x+1\right)\)
-3(x+4)(x-7)+7(x-5)(x-1)
=\(-3\left(x^2-3x-28\right)+7\left(x^2-6x+5\right)\)
= \(-3x^2+9x+84+7x^2-42x+35\)
= \(4x^2-33x+119\)
1, \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)
\(\Leftrightarrow-4x^2+28x+4x^3-20x=28x^2-13\)
\(\Leftrightarrow-32x^2+8x+4x^3-13=0\)( vô nghiệm )
2, \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)
\(\Leftrightarrow12x^3-7x^2-10x-7x^2-35x=-2x^2+11x-12+12x^3+2x^2\)
\(\Leftrightarrow12x^3-14x^2-45x=11x-12+12x^3\)
\(\Leftrightarrow-14x^2-56x-12=0\)( vô nghiệm )
Mình làm riêng ra nhá , chứ nhiều quá nên thông cảm cho mình :))
1. \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)
=> \(-4x^2+28x+4x^3-20x=28x^2-13\)
=> \(-4x^2+4x^3+\left(28x-20x\right)=28x^2-13\)
=> \(-4x^2+4x^3+8x-28x^2+13=0\)
=> \(\left(-4x^2-28x^2\right)+4x^3+8x+13=0\)
=> \(-32x^2+4x^3+8x+13=0\)
=> vô nghiệm
2. \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)
=> \(4x^2\left(3x+2\right)-5x\left(3x+2\right)-7x\left(x+5\right)=-4\left(-2x+3\right)+x\left(-2x+3\right)+12x^3+2x^2\)
=> \(12x^3+8x^2-15x^2-10x-7x^2-35x=8x-12-2x^2+3x+12x^3+2x^2\)
=> \(12x^3+8x^2-15x^2-10x-7x^2-35x-8x+12+2x^2-3x-12x^3-2x^2=0\)
=> \(\left(12x^3-12x^3\right)+\left(8x^2-15x^2-7x^2+2x^2-2x^2\right)+\left(-10x-35x-8x-3x\right)+12=0\)
=> \(-14x^2-56x+12=0\)
=> .... tự tìm
Câu c dấu bằng chỗ nào ?
\(A=2x^2+8x-20=2\left(x+2\right)^2-28\)
Vì \(\left(x+2\right)^2\ge0\forall x\)\(\Rightarrow2\left(x+2\right)^2-28\ge-28\)
Dấu "=" xảy ra \(\Leftrightarrow2\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy Amin = - 28 <=> x = - 2
A = 2x2 + 8x - 20
A = 2( x2 + 4x + 4 ) - 28
A = 2( x + 2 )2 - 28
2( x + 2 )2 ≥ 0 ∀ x => 2( x + 2 )2 - 28 ≥ -28
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MinA = -28 <=> x = -2
a)\(\frac{x^2+3x+2}{3x+6}=\frac{x^2+2x+x+2}{3\cdot\left(x+2\right)}=\frac{\left(x^2+2x\right)+\left(x+2\right)}{3\cdot\left(x+2\right)}=\frac{x\cdot\left(x+2\right)+\left(x+2\right)}{3\cdot\left(x+2\right)}\)
\(=\frac{\left(x+2\right)\cdot\left(x+1\right)}{3\cdot\left(x+2\right)}=\frac{x+1}{3}\)
b) \(\frac{2x^2+x-1}{6x-3}=\frac{2x^2+2x-x-1}{3\cdot\left(2x-1\right)}=\frac{\left(2x^2+2x\right)-\left(x+1\right)}{3\cdot\left(2x-1\right)}\)
\(=\frac{2x\cdot\left(x+1\right)-\left(x+1\right)}{3\cdot\left(2x-1\right)}=\frac{\left(2x-1\right)\cdot\left(x+1\right)}{3\cdot\left(2x-1\right)}=\frac{x+1}{3}\)