cho hai số dương a,b thỏa a2+b2=4,tìm GTNN của P=a3+b3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2
ta có \(\overrightarrow{AO}.\left(\overrightarrow{BO}+\overrightarrow{AC}-2\overrightarrow{BC}\right)=\overrightarrow{AO}.\overrightarrow{BO}+\overrightarrow{AO}.\overrightarrow{AC}-\overrightarrow{AO}.2\overrightarrow{BC}\)
\(=\overrightarrow{AO}.\overrightarrow{BO}+\overrightarrow{AO}.\overrightarrow{AC}=AO.BO.cos\left(120^0\right)+AO.AC.cos\left(30^0\right)\)
\(=\frac{a\sqrt{3}}{3}.\frac{a\sqrt{3}}{3}.-\frac{1}{2}+\frac{a\sqrt{3}}{3}.a.\frac{\sqrt{3}}{2}=\frac{a^2}{3}\)
b.Gọi J là trung điểm CK
ta có \(\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}=2\overrightarrow{MK}+2\overrightarrow{MC}=4\overrightarrow{MJ}\)
do \(\left|4\overrightarrow{MJ}\right|=a\Leftrightarrow MJ=\frac{a}{4}\)vậy tập hợp M là các điểm nằm trên đường tròn tâm J bán kính a/4.
Bài 3. điều kiện \(x\ge1\)
đặt \(\sqrt{x-1}=a\ge0\) ta có
\(a^2+a+3=3\sqrt{a^3+1}\)
hay \(\left(a^2-a+1\right)+2\left(a+1\right)=3\sqrt{\left(a^2-a+1\right).\left(a+1\right)}\)
\(\Leftrightarrow\left(\sqrt{a^2-a+1}-\sqrt{a+1}\right)\left(\sqrt{a^2-a+1}-2\sqrt{a+1}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a^2-a+1=a+1\\a^2-a+1=4\left(a+1\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}a=0\\a=2\end{cases}}}\) hoặc \(a=\frac{5+\sqrt{37}}{2}\)
từ đó ta tìm được x thuộc tập \(S=\left\{1;5;\frac{33+5\sqrt{37}}{2}\right\}\)
Gọi x là số kg cam
y là số kg quýt
Theo đề , ta có
\(\hept{\begin{cases}x+y=6\\15000x+20000y=100000\end{cases}}\)
\(\hept{\begin{cases}x=4\\y=2\end{cases}}\)
Đk: \(x^3+1\ge0\Leftrightarrow x\ge-1\left(1\right)\)
Đặt \(a=\sqrt{x+1};b=\sqrt{x^2-x+1}\left(a\ge0,b>0\right)\left(2\right)\Rightarrow a^2+b^2=x^2+2\)
Khi đó pt đã cho trở thành: \(10ab=3\left(a^2+b^2\right)\Leftrightarrow\left(a-3b\right)\left(3a-b\right)=0\Leftrightarrow\orbr{\begin{cases}a=3b\\b=3a\end{cases}}\)
+) Nếu a=3b thì từ (2) \(\Rightarrow\sqrt{x+1}=3\sqrt{x^2-x+1}\Leftrightarrow9x^2-10x+8=0\)( vô nghiệm)
+) Nếu b=3a thì từ (2) \(\Rightarrow3\sqrt{x+1}=\sqrt{x^2-x+1}\Leftrightarrow9x+9=x^2-x+1\Leftrightarrow x^2-10x-8=0\)
Pt có 2 nghiệm \(x_1=5+\sqrt{33};x_2=5-\sqrt{33}\left(tm\left(1\right)\right)\)