C/tỏ rằng các phương trình sau luôn có nghiệm với mọi a, b:
\(x^2+\left(a+b\right)x-2\left(a^2-a+b^2\right)=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em có cách khác không sử dụng Svacxo thưa cô :
Ta có : \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)
\(=\left(\frac{a^2}{a+b}+\frac{a+b}{4}\right)+\left(\frac{b^2}{b+c}+\frac{b+c}{4}\right)+\left(\frac{c^2}{c+a}+\frac{c+a}{4}\right)-\frac{a+b+c}{2}\)
Áp dụng BĐT Cô si cho các số không âm ta được :
\(\left(\frac{a^2}{a+b}+\frac{a+b}{4}\right)+\left(\frac{b^2}{b+c}+\frac{b+c}{4}\right)+\left(\frac{c^2}{c+a}+\frac{c+a}{4}\right)-\frac{a+b+c}{2}\)
\(\ge2\sqrt{\frac{a^2}{a+b}\cdot\frac{a+b}{4}}+2\sqrt{\frac{b^2}{b+c}\cdot\frac{b+c}{4}}+2\sqrt{\frac{a^2}{b+c}\cdot\frac{c+a}{4}}-\frac{1}{2}\)
\(=a+b+c-\frac{1}{2}=1-\frac{1}{2}=\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
Có:
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{a+b+b+c+c+a}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{1}{2}\)
Dấu "=" xảy ra <=> a = b = c = 1/3
Có: \(x^5+y^2=xy^2+1\)
<=> \(x^5-1=y^2\left(x-1\right)\)(1)
TH1: x = 1
=> \(1^2+y^2=1.y^2+1\) đúng với mọi y
TH2: \(x\ne1\)
(1) <=> \(y^2=x^4+x^3+x^2+x+1\)
<=> \(4y^2=4x^4+4x^3+4x^2+4x+4\)
Có:
+) \(4x^4+4x^3+4x^2+4x+4=4x^4+4x^3+x^2+2x^2+x^2+4x+4\)
\(=\left(2x^2+x\right)^2+2x^2+\left(x+2\right)^2>\left(2x^2+x\right)^2\)
=> \(\left(2y\right)^2>\left(2x^2+x\right)^2\)
+) \(4x^4+4x^3+4x^2+4x+4\le\left(2x^2+x+2\right)^2\)
=> \(\left(2y\right)^2\le\left(2x^2+x+2\right)^2\)
=> \(\left(2x^2+x\right)^2< \left(2y\right)^2\le\left(2x^2+x+2\right)^2\)
TH1: \(\left(2y\right)^2=\left(2x^2+x+2\right)^2\)
=> \(4x^4+4x^3+4x^2+4x+4=4x^4+x^2+4+4x^3+8x^2+4x\)
<=> x = 0
=> \(y=\pm1\)
TH2: \(\left(2y\right)^2=\left(2x^2+x+1\right)^2\)
=> \(4x^4+4x^3+4x^2+4x+4=4x^4+x^2+1+4x^3+4x^2+2x\)
<=> \(2x+3-x^2=0\)
<=> \(\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Với x = -1 => \(y=\pm1\)
Với x = 3 => \(y=\pm11\)
Kết luận:...
a/
Đặt \(\sqrt{1-x}=a\ge0\)
\(\Rightarrow\left(1-a\right)\sqrt[3]{1+a^2}=1-a^2\)
\(\Leftrightarrow\left(1-a\right)\left(\sqrt[3]{1+a^2}-1-a\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}1-a=0\left(1\right)\\\sqrt[3]{1+a^2}=1+a\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow1+a^2=1+a^3+3a^2+3a\)
\(\Leftrightarrow a^3+2a^2+3a=0\)
\(\Leftrightarrow a\left(a^2+2a+3\right)=0\)
b/ Đạt
\(\hept{\begin{cases}\sqrt{x+\frac{1}{x}}=a\\x-\frac{1}{x}=b\end{cases}}\)
\(\Rightarrow b+\sqrt{a^2+b}=a\)
\(\Leftrightarrow b^2+2b\sqrt{a^2+b}+a^2+b=a^2\)
\(\Leftrightarrow b\left(b+2\sqrt{a^2+b}+1\right)=0\)
Làm nôt
\(\hept{\begin{cases}mx+2my=m+1\\x+\left(m+1\right)y=2\end{cases}}\)
Để PT trên có nghiệm duy nhất:
\(\frac{m}{1}\ne\frac{2m}{m+1}\)
\(\Rightarrow m^2+m\ne2m\)
\(\Rightarrow m^2\ne m\Rightarrow m\ne0;m\ne1\)
\(\hept{\begin{cases}mx+2my=m+1\\x\left(m+1\right)y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}mx+2my=m+1\\mx+m\left(m+1\right)y=2m\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}mx+2my=m+1\\2my-m\left(m+1\right)y=m+1-2m\left(#\right)\end{cases}}\)
Từ (#) \(2my-m\left(m+1\right)y=m+1-2m\)
\(\Leftrightarrow2my-m^2y-my=1-m\)
\(\Leftrightarrow my-m^2y=1-m\)
\(\Leftrightarrow y\left(m-m^2\right)=1-m\)
\(\Leftrightarrow y=\frac{1-m}{m-m^2}\)
\(\Leftrightarrow y=\frac{1-m}{m\left(1-m\right)}=\frac{1}{m}\)
Ta có \(x+\left(m+1\right)y=2\)
\(\Leftrightarrow x+\frac{m+1}{m}=2\)
\(\Leftrightarrow x=2-\frac{m+1}{m}=\frac{2m-m-1}{m}=\frac{m-1}{m}\)
=> PT trên ta có 1 nghiệm (x;y) = (m-1/m;1/m)
Ta có \(x+y=\frac{m-1}{m}+\frac{1}{m}=\frac{m}{m}=1\)
\(\Rightarrow y=1-x\)
=>điểm M (x;y) luôn thuộc 1 đường thẳng cố định khi m thay đổi
P/s về câu trường hợp thì mik ko chắc chắn có đúng không, bạn nên hỏi các thầy cô để chắc chắn ạ, sai-ib để mik sửa chữa ạ >:
Chuẩn hóa \(a+b+c=1\)
Khi đó BĐT cần chứng minh tương đương với
\(\frac{a\left(1-a\right)}{1-2a+2a^2}+\frac{b\left(1-b\right)}{1-2b+2b^2}+\frac{c\left(1-c\right)}{1-2c+2c^2}\le\frac{6}{5}\)
Mặt khác:
\(2a\left(1-a\right)\le\left(\frac{2a+1-a}{2}\right)^2=\frac{\left(a+1\right)^2}{4}\)
Khi đó:\(1-2a+2a^2=1-2a\left(1-a\right)\ge1-\frac{\left(a+1\right)^2}{4}=\frac{\left(1-a\right)\left(a+3\right)}{4}>0\)
\(\Rightarrow\frac{a\left(1-a\right)}{1-2a+2a^2}\le\frac{4a\left(1-a\right)}{\left(1-a\right)\left(a+3\right)}=4\cdot\frac{a}{a+3}=4\left(1-\frac{3}{a+3}\right)\)
Tương tự rồi cộng lại ta được:
\(RHS\le4\left(3-\frac{3}{a+3}-\frac{3}{b+3}-\frac{3}{c+3}\right)\le4\left(3-\frac{3\cdot9}{a+b+c+9}\right)=\frac{6}{5}\)