Cho phương trình \(x^2-mx-2\left(m^2+8\right)=0\). Tìm m để phương trình có hai nghiệm thỏa mãn \(x_1^2+x_2^2=52\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a= 1; b= - 2(m-1) ; b'= -m+1; c=2m-5
a)
Xét: Δ'=b'2 - ac = (-m+1)2-(2m-5)= m2-2m+1-2m+5=m2-4m+6=m2-4m+4+2=(m-2)2+2
Vì (m-2)2≥0 nên Δ'=(m-2)2+2>0. Suy ra PT luôn có nghiệm.
b) Theo hệ thức Viet ta có:
S=x1+x2=\(\dfrac{-b}{a}\)=2(m-1)
Theo đề ra tổng 2 nghiệm bằng 6 nên:
2(m-1)=6 ⇔m=4
Vậy với m=4 thì PT có tổng 2 nghiệm bằng 6.
Định lí 1 : Nếu tam giác vuông có một góc bằng \(30^0\)thì cạnh đối diện với góc ấy bằng nửa cạnh huyền
Vì \(DP\perp AB\)(giả thiết) \(\Rightarrow\Delta PAD\)vuông tại P
\(\Delta PAD\)vuông tại P có \(\widehat{DAP}=60^0\)(giả thiết)
\(\Rightarrow\widehat{PDA}=30^0\)
Do đó \(2PA=DA\)(định lí 1)
\(\Rightarrow4PA^2=DA^2\)
Vì \(\Delta PAD\)vuông tại P (chứng minh trên)
\(\Rightarrow PA^2+PD^2=AD^2\)(định lí Py-ta-go)
\(\Rightarrow PA^2+4^2=4PA^2\)(thay số)
\(\Rightarrow4PA^2-PA^2=16\)
\(\Rightarrow3PA^2=16\)
\(\Rightarrow PA^2=\frac{16}{3}\Rightarrow PA=\sqrt{\frac{16}{3}}=\frac{4}{\sqrt{3}}\left(cm\right)\)(vì \(PA>0\))
Do đó: \(DA=2PA=2.\frac{4}{\sqrt{3}}=\frac{8}{\sqrt{3}}\left(cm\right)\)
Vì \(CH\perp AB\)(giả thiết)
\(\Rightarrow\Delta CHB\)vuông tại H.
\(\Delta CHB\)vuông tại H có \(\widehat{HCB}=60^0\)(giả thiết)
\(\Rightarrow BC=2HC\)(định lí 1)
\(\Rightarrow BC=2.4\)(thay số)
\(\Rightarrow BC=8\left(cm\right)\)
Vì \(\Delta CHB\)vuông tại H (chứng minh trên)
\(\Rightarrow HB^2+HC^2=BC^2\)(định lí Py-ta-go)
\(\Rightarrow HB^2+4^2=8^2\)(thay số)
\(\Rightarrow HB^2+16=64\)
\(\Rightarrow HB^2=56\Rightarrow HB=\sqrt{56}=2\sqrt{14}\left(cm\right)\)(vì \(HB>0\))
Mặt khác, xét tứ giác DCHP có:
\(DP//CH\)(vì cùng vuông góc với AB)
Và \(DP=CH\)(giả thiết)
\(\Rightarrow\)DCHP là hình bình hành
\(\Rightarrow CD=PH=3\left(cm\right)\)(tính chất).
Ta có:
\(AB=AP+PH+HB\)
\(\Rightarrow AB=\frac{4}{\sqrt{3}}+3+2\sqrt{14}\left(cm\right)\)
Do đó:
\(P_{ABCD}=AB+BC+CD+DA=\)\(\frac{4}{\sqrt{3}}+3+2\sqrt{14}+8+3+\frac{8}{\sqrt{3}}\)(thay số)
\(P_{ABCD}=\frac{12}{\sqrt{3}}+14+2\sqrt{14}=4\sqrt{3}+2\sqrt{14}+14\left(cm\right)\)
Vậy \(P_{ABCD}=4\sqrt{3}+2\sqrt{14}+14\left(cm\right)\)
x2
−mx−2(m2
+8)=0
a= 1; b= -m; c= -2(m2+8)
+) Xét: Δ=b2-4ac=m2+4.2(m2+8)=m2+8m2+64=9m2+64
Vì 9m2+64>0 nên PT luôn có 2 nghiệm phân biệt.
+) Theo Viet ta có:
S=..=m và P=...=-2(m2+8)
Mà ta có: x12+x22=52
Hay: (x1+x2)2-2x1.x2=52 (1)
Hay m2- 2[-2(m2+8)]=52 (Thay S=..=m và P=...=-2(m2+8) vào (1))
⇔m2+4m2+32=52 ⇔5m2=20⇔m2=4⇔m=\(\pm\)2 (thỏa mãn)
Vậy với m =\(\pm\)2 thì PT có 2 nghiệm thỏa mãn đề bài
m=±2