Tìm x, biết:
(x+2)2-(x+3)(x-3)=5.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
Bài 7:
a, \(A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=" xảy ra khi x - 1 = 0 <=> x = 1
Vây GTNN của A = 4 khi x = 1
b, \(B=x^2-x+1=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu "=" xảy ra khi x - 1/2 = 0 <=> x = 1/2
Vậy GTNN của B = 3/4 khi x = 1/2
c, \(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(=\left(x^2+6x-x-6\right)\left(x^2+3x+2x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-6^2=\left(x^2+5x\right)^2-36\ge-36\forall x\)
Dấu "=" xảy ra khi \(x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy GTNN của C = - 36 khi x = 0; x = - 5
d, \(D=x^2+5y^2-2xy+4y+3=x^2+y^2+4y^2-2xy+4y+1+2\)
\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+2=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\forall x,y\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}\Leftrightarrow\hept{x=y=-\frac{1}{2}}}\)
Vậy GTNN của D = 2 khi x = y = - 1/2
Bài 10.
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
\(=\left(n^2+3n+1-1\right)\left(n^2+3n+1+1\right)+1\)
\(=\left(n^2+3n+1\right)^2-1^2+1\)
\(=\left(n^2+3n+1\right)^2\)
Ta có đpcm.
c) \(\left(2x+1\right)\left(1-2x\right)+\left(1-2x\right)^2=18\)
\(\Leftrightarrow2x-4x^2+1-2x+4x^2-4x+1=18\)
\(\Leftrightarrow-4x+2=18\Leftrightarrow-4x=16\Leftrightarrow x=-4\)
Vậy x=-4
d) \(2\left(x+1\right)^2-\left(x-3\right)\left(x+3\right)-\left(x-4\right)^2=0\)
\(\Leftrightarrow2\left(x^2+2x+1\right)-\left(x^2+3x-3x-9\right)-\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow2x^2+4x+2-x^2-3x+3x+9-x^2+8x-16=0\)
\(\Leftrightarrow12x-5=0\Leftrightarrow12x=5\Leftrightarrow x=\frac{5}{12}\)
e) \(\left(x-5\right)^2-x\left(x-4\right)=9\)
\(\Leftrightarrow x^2-10x+25-x^2+4x=9\)
\(\Leftrightarrow-6x+25=9\Leftrightarrow-6x=-16\Leftrightarrow x=\frac{8}{3}\)
f) \(\left(x-5\right)^2+\left(x-4\right)\left(1-x\right)=0\)
\(\Leftrightarrow x^2-10x+25+x-x^2-4+4x=0\)
\(\Leftrightarrow-5x+21=0\Leftrightarrow-5x=-21\Leftrightarrow x=\frac{21}{5}\)
a) \(A=\left(x+3\right)^2+\left(x-3\right)\left(x+3\right)-2\left(x+2\right)\left(x-4\right)\)
\(\Leftrightarrow A=x^2+6x+9+x^2+3x-3x-9-2\left(x^2-4x+2x-8\right)\)
\(\Leftrightarrow A=x^2+6x+9+x^2+3x-3x-9-2x^2+8x-4x+16\)
\(\Leftrightarrow A=10x+16\)
Thay \(x=-\frac{1}{2}\) vào biểu thức ta có:
\(A=10.\frac{-1}{2}+16=11\)
Vậy...
b) \(B=\left(3x+4\right)^2-\left(x-4\right)\left(x+4\right)-10x\)
\(\Leftrightarrow B=9x^2+24x+16-\left(x^2+4x-4x-16\right)-10x\)
\(\Leftrightarrow B=9x^2+24x+16-x^2-4x+4x+16-10x\)
\(\Leftrightarrow B=8x^2+14x+32\)
Thay \(x=-\frac{1}{10}\) vào biểu thức ta có:
\(8.\left(\frac{-1}{10}\right)^2+14.\frac{-1}{10}+32=\frac{767}{25}\)
c) \(C=\left(x+1\right)^2-\left(2x-1\right)^2+3\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow C=x^2+2x+1-\left(4x^2-4x+1\right)+3\left(x^2+2x-2x-4\right)\)
\(\Leftrightarrow C=x^2+2x+1-4x^2+4x-1+3x^2+6x-6x-12\)
\(\Leftrightarrow C=6x-12\)
Thay x=1 vào biểu thức ta có:
\(6.1-12=-6\)
Vậy....
d) \(D=\left(x-3\right)\left(x+3\right)+\left(x-2\right)^2-2x\left(x-4\right)\)
\(\Leftrightarrow D=x^2+3x-3x-9+x^2-4x+4-2x^2+8x\)
\(\Leftrightarrow D=4x-5\)
Thay x=-1 vào biểu thức ta có:
4.(-1)-5=-9
Vậy....
\(\left(2-x\right)\left(3x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2-x=0\\3x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}}\)
Vậy nghiệm PT trên là 2;-2
=> Chọn C
#H
Câu 3.
Tam giác \(ABC\)vuông cân tại \(A\)nên \(\widehat{ACB}=45^o\).
Tam giác \(BCD\)vuông cân tại \(B\)nên \(\widehat{BCD}=45^o\).
\(\widehat{ACD}=\widehat{ACB}+\widehat{BCD}=45^o+45^o=90^o\)
\(\Rightarrow AC\perp CD\)
mà \(AC\perp AB\)
nên \(AB//CD\)
suy ra \(ABCD\)là hình thang vuông.
Câu 4.
Kẻ \(BE\perp CD\)khi đó \(\widehat{BED}=90^o\).
Tứ giác \(ABED\)có \(4\)góc vuông nên là hình chữ nhật, mà \(AB=AD\)nên \(ABED\)là hình vuông.
\(BE=DE=AB=2\left(cm\right)\)
\(EC=CD-DE=4-2=2\left(cm\right)\)
Suy ra tam giác \(BEC\)vuông cân tại \(E\)
Suy ra \(\widehat{EBC}=\widehat{ECB}=45^o\)
\(\widehat{ABC}=\widehat{ABE}+\widehat{EBC}=90^o+45^o=135^o\)
Trả lời:
a, ( a + b )3 + ( a - b )3
= a3 + 3a2b + 3ab2 + b3 + a3 - 3a2b + 3ab2 - b3
= 2a3 + 6ab2
= 2a ( a2 + 3b2 ) (đpcm)
b, Sửa đề: ( a + b )3 - ( a - b )3
= a3 + 3a2b + 3ab2 + b3 - ( a3 - 3a2b + 3ab2 - b3 )
= a3 + 3a2b + 3ab2 + b3 - a3 + 3a2b - 3ab2 + b3
= 6a2b + 2b3
= 2b ( b2 + 2a2 )
Ta có: a2 + b2 = (a + b)2 - 2ab = 62 - 2.4 = 28
a4 + b4 = (a2 + b2)2 - 2a2b2 = 282 - 2.42 = 752
(3x+5)2-2(3x+5)(3x-2)+(3x-2)2
=9x2+30x+25-2(9x2-6x+15x-10)+9x2-12x+4
=9x2+30x+25-18x2+12x-30x+20+9x2-12x+4
=49
=> GTBT không phụ thuộc vào giá trị của biến (đccm)
#H
a)\(\left(x+y\right)^2-y^2=\left(x+y-y\right)\left(x+y+y\right)\)
\(=x\left(x+2y\right)\)
b) \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x-y\right)^2\cdot\left(x+y\right)^2\)
c) \(\left(x+y\right)^3=x^3+3x^2y+3xy^2+y^3\)
\(=\left(x^3-6x^2y+9xy^2\right)+\left(y^3-6xy^2+9x^2y\right)\)
\(=x\left(x-3y\right)^2+y\left(y-3x\right)^2\)
(x + 2)2 - (x + 3)(x - 3) = 5
<=> x2 + 4x + 4 - x2 + 9 = 5
<=> 4x = -8
<=> x = -2
Trả lời:
( x + 2 )2 - ( x + 3 ) ( x - 3 ) = 5
<=> x2 + 4x + 4 - ( x2 - 9 ) = 5
<=> x2 + 4x + 4 - x2 + 9 = 5
<=> 4x + 13 = 5
<=> 4x = - 8
<=> x = - 2
Vậy x = - 2 là nghiệm của pt.