Tính nhanh:
1/2+1/4+1/8+1/16+1/32+1/64
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}45\left(t+\dfrac{1}{2}\right)=S\\60\left(t-\dfrac{3}{4}\right)=S\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}45\left(t+\dfrac{1}{2}\right)=60\left(t-\dfrac{3}{4}\right)\\S=45\left(t+\dfrac{1}{2}\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\left(t+\dfrac{1}{2}\right)=4\left(t-\dfrac{3}{4}\right)\\S=45\left(t+\dfrac{1}{2}\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3t+1,5=4t-3\\S=45\left(t+0,5\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-t=-4,5\\S=45\left(t+0,5\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}t=4,5\\S=45\left(4,5+0,5\right)=45\cdot5=225\end{matrix}\right.\)
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\) + \(\dfrac{1}{64}\)
2\(\times\)A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\)
2\(\times\)A - A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\) - (\(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\)+\(\dfrac{1}{32}\)+\(\dfrac{1}{64}\))
A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\) - \(\dfrac{1}{2}\) - \(\dfrac{1}{4}\) - \(\dfrac{1}{8}\) - \(\dfrac{1}{16}\) - \(\dfrac{1}{32}\) - \(\dfrac{1}{64}\)
A = (1 - \(\dfrac{1}{64}\))+(\(\dfrac{1}{2}\) - \(\dfrac{1}{2}\))+(\(\dfrac{1}{4}\) - \(\dfrac{1}{4}\))+(\(\dfrac{1}{8}\)-\(\dfrac{1}{8}\))+(\(\dfrac{1}{16}\) - \(\dfrac{1}{16}\))+(\(\dfrac{1}{32}\)-\(\dfrac{1}{32}\))
A = 1 - \(\dfrac{1}{64}\)
A = \(\dfrac{63}{64}\)
12+14+18+116+132+164
1/2+1/4+1/8+1/16+1/32+1/64=1−12+12−14+14−18+18−116+116−132+132−164=1−21+21−41+41−81+81−161+161−321+321−641
=1−164=1−641
=6364=6463