1. Cho A = |x - 2| - |x - 3|.
a) Tìm x để A đạt giá trị nhỏ nhất.
b) lớn nhất.
2. M = 5x2 - 7x - 2014. Tìm x để M đạt giá trị nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) => X/3 = Y/4
(2X^2 + Y^2)/(2.3^2 + 4^2) = 136/34 = 4
2X^2 = 4.18 = 72 => x = 6
y^2 = 4.16 = 64 => y = 8
5) (a+2b-3c)/(2+2.3 - 3.4) = 20/4 = 5
a = 10
2b = 30 => b = 15
3c = 60 => c = 20
Lời giải:
$a^2=bc\Rightarrow \frac{a}{c}=\frac{b}{a}$
Đặt $\frac{a}{c}=\frac{b}{a}=k\Rightarrow a=ck; b=ak$
Khi đó:
$\frac{a+b}{a-b}=\frac{a+ak}{a-ak}=\frac{a(1+k)}{a(1-k)}=\frac{1+k}{1-k}(1)$
$\frac{c+a}{c-a}=\frac{c+ck}{c-ck}=\frac{c(1+k)}{c(1-k)}=\frac{1+k}{1-k}(2)$
Từ $(1); (2)$ ta có đpcm.
\(A=4+2^2+2^3+...+2^{20}\)
\(\Rightarrow2A=8+2^3+2^4+...2^{21}\)
\(\Rightarrow2A-A=\left(8+2^3+2^4+...+2^{21}\right)-\left(4+2^2+2^3+...+2^{20}\right)\)
\(\Rightarrow A=8+2^{21}-4-2^2\)
\(\Rightarrow A=8+2^{21}-4-4\)
\(\Rightarrow A=2^{21}\)
Có: \(128=2^4\)
Mà \(2^{21}:2^7=2^{14}\)
\(\Rightarrow2^{21}⋮2^7\)
\(\Rightarrow A⋮2^7\)
\(\Rightarrow A⋮128\)
Lời giải:
a.
$\widehat{AEF}=180^0-\widehat{CEM}=180^0-(90^0-\widehat{C})=90^0+\widehat{C}$
Vậy trong tam giác $AEF$ có góc $\widehat{AEF}$ là góc tù nên đây là góc lớn nhất
$\Rightarrow \widehat{AEF}=\widehat{AFE}$
$\Rightarrow AE\neq AF$
Đề có vấn đề, bạn xem lại nhé.
Nếu không có thêm điều kiện gì của $x$ thì biểu thức $E$ không có giá trị nhỏ nhất bạn nhé.