cho đường tròn (o) đường kính ab . Qua điểm I cảu bán kính OB kẻ dây CD vuông góc với ab .Kẻ dây CE song song với AB .Chứng minh rằng
a/ AE=BC=BD
b/ E,O,D thẳng hàng
c/ tứ giác ABED là hình chữ nhật
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 :
Đặt \(x=4+a;y=5+b;z=6+c\) ( x,y,z \(\ge\)0 )
\(x^2+y^2+z^2=90\Leftrightarrow\left(4+a\right)^2+\left(5+b\right)^2+\left(6+c\right)^2=90\)
\(\Leftrightarrow a^2+b^2+c^2+8a+10b+12c=13\)
Ta có : \(\hept{\begin{cases}a^2+b^2+c^2\le\left(a+b+c\right)^2\\8a+10b+12c\le12\left(a+b+c\right)\end{cases}}\)
\(\Rightarrow13\le\left(a+b+c\right)^2+12\left(a+b+c\right)\)
\(\Rightarrow\left(a+b+c\right)^2+12\left(a+b+c\right)-13\ge0\)
\(\Rightarrow a+b+c\ge1\)
Từ đó suy ra \(x+y+z=4+a+5+b+6+c\ge16\)
Min H = 16 khi x = 4 ; y = 5 ; z = 7
bài 2 :
\(\hept{\begin{cases}a+b+c+d=0\\a^3+b^3+c^3+d^3=0\end{cases}\Leftrightarrow\hept{\begin{cases}a+b=-\left(c+d\right)\\\left(a+b\right)^3+\left(c+d\right)^3-3ab\left(a+b\right)-3cd\left(c+d\right)=0\left(1\right)\end{cases}}}\)
Từ ( 2 ) suy ra \(3ab\left(c+d\right)-3cd\left(c+d\right)=0\)\(\Rightarrow3\left(ab-cd\right)\left(c+d\right)=0\Rightarrow\orbr{\begin{cases}ab=cd\\c+d=0\left(dpcm\right)\end{cases}}\)
với \(ab=cd\Rightarrow\frac{a}{c}=\frac{d}{b}=\frac{a+d}{b+c}=\frac{-\left(b+c\right)}{b+c}=-1\)
\(\Rightarrow a=-c;d=-b\Rightarrow a+c=b+d=0\)( dpcm )
bài 3 :
( hình câu a,b,c,d,e )
a) \(\Delta ABC\)nội tiếp ( O ) đường kính BC nên vuông tại A \(\Rightarrow\widehat{BAC}=90^o\)
Vì I đối xứng với H qua AB ; K đối xứng với H qua AC
\(\Rightarrow\Delta BIA=\Delta BHA\left(c.c.c\right)\)
\(\Rightarrow\widehat{BIA}=\widehat{BHA}=90^o;\widehat{IAB}=\widehat{HAB}\)
tương tự : \(\widehat{AHC}=\widehat{AKC}=90^o;\widehat{HAC}=\widehat{KAC}\)
Ta có : \(\widehat{IAK}=\widehat{IAH}+\widehat{HAK}=2\widehat{BAH}+2\widehat{HAC}=2\widehat{BAC}=180^o\)
suy ra I,A,K thẳng hàng
Ta có : AI = AK ( = AH ) nên A là trung điểm của IK
Dễ thấy BIKC là hình thang vuông có OA là đường trung bình nên \(OA//BI//KC\)nên OA \(\perp\)IK
suy ra IK là tiếp tuyến của ( O )
b) \(\frac{1}{BH^2}=\frac{1}{AB^2}+\frac{1}{AN^2}=\frac{AN^2+AB^2}{AB^2.AN^2}=\frac{BN^2}{AB^2.AN^2}\Leftrightarrow\left(BH.BN\right)^2=\left(AB.AN\right)^2\)
Cần chứng minh BH . BN = AB . AN
vì BN // AH nên \(\widehat{ABN}=\widehat{BAH}\)
\(\Rightarrow\Delta ABH~\Delta BNA\left(g.g\right)\Rightarrow\frac{AB}{BH}=\frac{BN}{AN}\Rightarrow BH.BN=AB.AN\)
\(\Rightarrow dpcm\)
c) Ta có : \(\hept{\begin{cases}OM\perp AB\\AB\perp AC\end{cases}\Rightarrow OM//AC}\)
\(\Delta BNC\)có BO = OC ; OM // NC nên NM = BM hay M là trung điểm của BN
Dễ thấy AEHF là hình chữ nhật nên EF đi qua trung điểm của AH ( 1 )
Xét hình thang ANBH có M là trung điểm của BN ; NA và BH cắt tại C nên MC đi qua trung điểm của AH ( 2 )
Từ ( 1 ) và ( 2 ) suy ra MC,AH và EF đồng quy
d) \(S_{BIKC}=\frac{\left(BI+KC\right).IK}{2}=\frac{\left(BH+HC\right).\left(AI+AK\right)}{2}=\frac{BC.2AH}{2}=2R.AH\)
Để \(S_{BIKC}\)đạt giá trị lớn nhất thì AH max
Mà AH \(\le R\)\(\Rightarrow S_{BIKC}\)đạt giá trị lớn nhất là \(2R^2\)khi A nằm chính giữa cung BC
e) Áp dụng các hệ thức lượng, ta có :
\(AH^2=BH.HC\); \(BH^2=BE.AB;HC^2=CF.AC;AH.BC=AB.AC\)
\(\Rightarrow AH^4=BH^2.HC^2=BE.AB.CF.AC=AH.BC.BE.CF\)
\(\Rightarrow AH^3=BE.CF.BC\)
Gọi vận tốc của người đi xe đạp lúc đầu là x(x>0)
Thời gian dự định đi hết quãng đường AB là : \(\frac{30}{x}\left(h\right)\)
Thời gian người đó đi hết nửa quãng đường đầu là : \(\frac{15}{x}\left(h\right)\)
Thời gian người đó đi hết nửa quãng đường sau là : \(\frac{15}{x+2}\left(h\right)\)
15 phút=\(\frac{1}{4}\)h Ta có:
\(\frac{30}{x}=\frac{15}{x}+\frac{1}{4}+\frac{15}{x+2}\)
\(\Leftrightarrow\frac{15}{x}-\frac{15}{x+2}=\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+2}=\frac{1}{60}\)
\(\Leftrightarrow\frac{2}{x\left(x+2\right)}=\frac{1}{60}\)
\(\Leftrightarrow x\left(x+2\right)=120\)
\(\Leftrightarrow\orbr{\begin{cases}x=-12\\x=10\end{cases}\Rightarrow x=10}\)
Gọi số sản phẩm người công nhân đó phải làm là x(sản phẩm)
Khi đó, thời gian dự định của người công nhân là \(\frac{x}{23}\left(h\right)\)
Số sản phẩm lúc sau là x+18 (sản phẩm)
Thời gian làm lúc sau là \(\frac{x+18}{31}\left(h\right)\)
Do làm xong sớm hơn dự định 2h nên thời gian sau ngắn hơn thgian trc 2h, do đó
\(\frac{x+18}{31}=\frac{x}{23}-2\)
\(\Leftrightarrow23\left(x+18\right)=31x-2.23.31\)
\(\Leftrightarrow8x=1840\)
\(\Leftrightarrow x=230\)
Vậy số sản phẩm người đó phải làm là 230 sản phẩm.
Giải: