Từ điểm A ở bên ngoài đường tròn (O) kẻ 2 tiếp tuyến AB AC với đường tròn (O) (B C là các tiếp điểm ) gọi M là trung điểm của đường thẳng AB i là giao điểm đường thẳng MC với đường tròn (O) (I khác C) chứng minh a/MBI=BCM b/ chứng ming tam giác MAI đồng dạng với tam giác MCA c/ gọi giao điểm thứ hai của tia AI với đường tròn (O) là D ( D khác I_ chứng minh tam giác BCD là tam giác cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Ta có :
\(a^3+b^3+1\ge3\sqrt[3]{a^3.b^3.1}=3ab\)
\(b^3+c^3+1\ge3\sqrt[3]{b^3.c^3.1}=3bc\)
\(c^3+a^3+1\ge3\sqrt[3]{c^3a^3.1}=3ca\)
Cộng vế với vế
\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3.3\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
Dấu = xảy ra khi a=b=c=1
Gọi khoảng cách AB là x (x>0)
Vì vận tốc xuôi dòng của cano là 40km/h, vận tốc dòng nước là 3km/h
\(\Rightarrow\)Vận tốc riêng của cano là 40−3=37(km/h)
\(\Rightarrow\)Vận tốc ngược dòng của cano là 37−3=34(km/h)
Vì thời gian xuôi dòng ít hơn thời gian ngược dòng 40′ ( hay \(\frac{2}{3}h\) )
\(\Rightarrow\frac{x}{40}+\frac{2}{3}=\frac{x}{34}\)
\(\Rightarrow51x+1360=60x\)
\(\Rightarrow9x=1360\)
\(\Rightarrow x=\frac{1360}{9}\)
Gọi vận tốc của xe máy và ô tô lần lượt là: x,y (km/h) (x,y>0)
Khi khởi hành cùng lúc, quãng đường xe máy đi được đến khi gặp nhau là: 120 (km)
Khi khởi hành cùng lúc, thời gian xe máy đi được đến khi gặp nhau là: \(\frac{120}{x}\left(h\right)\)
Khi khởi hành cùng lúc, quãng đường ô tô đi được đến khi gặp nhau là:
200-120=80 (km)
Khi khởi hành cùng lúc, thời gian ô tô đi được đến khi gặp nhau là: \(\frac{80}{y}\left(h\right)\)
Vì 2 xe khởi hành cùng lúc nên đến khi gặp nhau 2 xe trong khoảng thời gian như nhau nên :
\(\frac{120}{x}=\frac{80}{y}\left(1\right)\)
Khi xe máy khởi hành sau 1 giờ, quãng đường xe máy đi được đến khi gặp nhau là:
120-24=96 (km)
Khi xe máy khởi hành sau 1 giờ, thời xe máy đi được đến khi gặp nhau là: \(\frac{96}{x}\left(h\right)\)
Khi xe máy khởi hành sau 1 giờ, quãng đường ô tô đi được đến khi gặp nhau là:
200-96=104 (km)
Khi xe máy khởi hành sau 1 giờ, thời ô tô đi được đến khi gặp nhau là:\(\frac{104}{y}\left(h\right)\)
Vì xe máy khởi hành sau 1 giờ nên ta có :
\(\frac{96}{x}=\frac{104}{y}-1\left(2\right)\)
Ta có hệ phương trình:
\(\hept{\begin{cases}\frac{120}{x}=\frac{80}{y}\\\frac{96}{x}=\frac{104}{y}-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{80}{120y}=\frac{2}{3y}\\96.\frac{2}{3y}=\frac{104-y}{y}\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{2}{3y}\\\frac{64}{y}=\frac{104-y}{y}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{2}{3y}\Rightarrow x=1:\frac{2}{120}=60\\y=104-64=40\end{cases}}\)
Vậy vận tốc của xe máy là 60km/h và vận tốc của ô tô là 40km/h.
a.Vì AB là tiếp tuyến của (O)
\(\Rightarrow MB\) là tiếp tuyến của (O)
\(\Rightarrow\widehat{MBI}=\widehat{BCM}\)
\(\Rightarrow\Delta MBI~\Delta MCB\left(g.g\right)\)
b ) Từ câu a ) \(\Rightarrow\frac{MB}{MC}=\frac{MI}{MB}\Rightarrow MB^2=MI.MC\)
Mà M là trung điểm AB \(\Rightarrow MA=MB\Rightarrow MA^2=MI.MC\)
\(\Rightarrow\frac{MA}{MI}=\frac{MC}{MA}\Rightarrow\Delta MAI~\Delta MCA\left(c.g.c\right)\)
c ) Từ câu a , b \(\Rightarrow\widehat{MBI}=\widehat{MCI},\widehat{MAI}=\widehat{ACI}\)
\(\Rightarrow\widehat{BCD}=\widehat{BID}=\widehat{IBA}+\widehat{IAB}=\widehat{ICB}+\widehat{ICA}=\widehat{BCA}=\widehat{BDC}\)
\(\Rightarrow\Delta BCD\) cân tại B