K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2020

Ta có : \(B=\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1+\frac{a-\sqrt{a}}{1-\sqrt{a}}\right)\)

                  \(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right).\left(1+\frac{\sqrt{a}\left(\sqrt{-1}+\sqrt{a}\right)}{1-\sqrt{a}}\right)\)

                 \(=\left(1+\sqrt{a}\right).\left(1-\sqrt{a}\right)\)

                   = \(1-a\)

Vậy B = 1-a

25 tháng 4 2020

Gọi thời gian xe đầu tiên đi đến lúc gặp xe thứ hai là x(h), khi đó thời gian xe thứ hai đi đc là x−2(h)

Vậy quãng đường xe thứ nhất đi đc là 36x(km) và xe thứ hai đi đc là 48(x−2)(km).

Do quãng đường 2 xe đi đc có độ dài bằng tổng quãng đường AB nên ta có

\(36x+48\left(x-2\right)=168\)

\(\Leftrightarrow84x=264\)

\(\Leftrightarrow x=\frac{22}{7}\)

Điểm gặp nhau cách điểm A quãng đường là \(36.\frac{22}{7}=\frac{792}{7}\)

Vậy sau \(\frac{22}{7}\left(h\right)\approx188,57'\)  thì hai xe gặp nhau và gặp nhau cách A một đoạn \(\frac{792}{7}\left(km\right)\approx113,14\left(km\right)\)

24 tháng 4 2020

a) Thay \(m=3\)vào phương trình ta được phương trình mới là: \(x^2-6x+4=0\)

Ta có: \(\Delta=\left(-6\right)^2-4.1.4=36-16=20>0\)

\(\Rightarrow\)Phương trình có 2 nghiệm phân biệt :

\(x_1=\frac{-\left(-6\right)+\sqrt{20}}{2}=\frac{6+2\sqrt{5}}{2}=\frac{2\left(3+\sqrt{5}\right)}{2}=3+\sqrt{5}\)

\(x_2=\frac{-\left(-6\right)-\sqrt{20}}{2}=\frac{6-2\sqrt{5}}{2}=\frac{2\left(3-\sqrt{5}\right)}{2}=3-\sqrt{5}\)

Vậy với \(m=3\)thì phương trình có tập nghiệm là: \(S=\left\{3-\sqrt{5};3+\sqrt{5}\right\}\)

b) Để phương trình có 2 nghiệm thì \(\left(-2m\right)^2>4.1.4\)

\(\Leftrightarrow4m^2>16\)\(\Leftrightarrow m^2>4\)\(\Leftrightarrow\orbr{\begin{cases}m< -2\\m>2\end{cases}}\)

Vậy để phương trình có 2 nghiệm thì \(m< -2\)hoặc \(m>2\)

24 tháng 4 2020

Có: \(\Delta=\left(m-2\right)^2\ge0\) => pt đã cho có nghiệm 

Vi-et: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)

\(C=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\frac{2m+1}{m^2+2}\)

đến đây xét delta ra min max..

26 tháng 4 2020

Ta có \(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0\)

=> PT luôn có 2 nghiệm x1;x2 với mọi m

Khi đó theo hệ thức Vi-et ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)

Khi đó: \(B=\frac{2x_1x_2+3}{x_1^2+x_2^2+2\left(x_1x_2+1\right)}\)

\(B=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2-2x_1x_2+2x_1x_2+2}\)

\(B=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+3}=\frac{2\left(m-1\right)3}{m^2+2}=\frac{2m+1}{m^2+2}\)

=> 2B+1=\(2\cdot\frac{2m+1}{m^2+2}+1=\frac{4m+2+m^2+2}{m^2+2}=\frac{m^2+4m+4}{m^2+2}=\frac{\left(m+2\right)^2}{m^2+2}\)

Ta có (m+2)2 >=0; m2+2>0 

<=> 2B+1 >=0 <=> \(B\ge\frac{-1}{2}\)

Dấu "=" xảy ra <=> m=-2

Vậy MinB=\(\frac{-1}{2}\)đạt được khi m=-2

24 tháng 4 2020

Câu 1 : 

Nửa chu vi miếng đất hình chữ nhật là: 100:2=50(m)

Gọi chiều dài miếng đất là: x(m)

      chiều rộng miếng đất là: y(m)

                (y<x<50)

Miếng đất hình chữ nhật có nửa chu vi là 50m . 

=> Phương trình: x+y=50 (1)

5 lần chiều rộng hơn 2 lần chiều dài 40m.

\(\Rightarrow\) Phương trình : \(-2x+5y=40\left(2\right)\)

Từ (1) và (2) ta có hệ phương trình:

\(\hept{\begin{cases}x+y=50\\-2x+5y=40\end{cases}}\)

\(\hept{\begin{cases}y=50-x\\-2x+5\left(50-x\right)=40\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=50-x\\-2x+250-5x=40\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=50-x\\-2x-5x=40-250\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=50-x\\-7x=-210\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=50-30\\x=30\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=20\left(nhận\right)\\x=30\left(nhận\right)\end{cases}}\)

Vậy miếng đất hình chữ nhật có chiều dài là 30m và chiều rộng 20m

24 tháng 4 2020

Câu 2 : 

a) Gọi số người lớn trong gia đình bác Tú là: x(người)

          Số trẻ em trong gia đình bác Tú là: y(người) 

\(\left(y< x< 12\right)\left(x,y\inℕ^∗\right)\)

Gia đình bác Tú có 12 người. 

=> Phương trình: x+y=12x (1)

Năm nay, gia đình bác dự định đi du lịch trong hè với tổng số tiền là 30 triệu đồng. Trong đó, mỗi người lớn chi phí cho chuyến đi hết 3 triệu, mỗi trẻ em chi phí hết 1,5 triệu.

=> Phương trình \(3x+1,5y=30\left(2\right)\)

Từ (1) và (2) ta có hệ phương trình:

\(\hept{\begin{cases}x+y=12\\3x+1,5y=30\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=8\left(nhận\right)\\y=4\left(nhận\right)\end{cases}}\)

Vậy gia đình bác Tú có 88 người lớn và 44 trẻ em.

b) Gọi số tiền mà mỗi người lớn phải trả trong chuyến du lịch đó hết x(triệu)

          số tiền mà mỗi trẻ em phải trả trong chuyến du lịch đó hết y(triệu)

(y<x<43,6) 

Năm ngoái, gia đình bác cũng với số người đó nhưng tiêu tốn chi phí cho cả chuyến du lịch của gia đình hết 43,6 triệu.

\(\Rightarrow\)Phương trình : \(x+y=43,6\left(1\right)\)

Mỗi người lớn chi phí nhiều hơn một trẻ em là 1,7 triệu.

\(\Rightarrow\) Phương trình : \(x-y=1,7\left(2\right)\)

Từ (1) và (2) ta có hệ phương trình:

\(\hept{\begin{cases}x+y=43,6\\x-y=1,7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=22,65\left(nhận\right)\\y=20,95\left(nhận\right)\end{cases}}\)

Vậy trong chuyến du lịch đó chi phí cho mỗi người lớn là 22,65 triệu, trẻ em là 20,95 triệu. 

24 tháng 4 2020

+) Ta có: P(x) = 0 có 3 nghiệm phân biệt 

=> Gọi 3 nghiệm đó là m; n ; p. 

=> P(x) = ( x - m ) ( x - p ) (x - n) 

=> P(Q(x)) = ( x^2 + 2016x + 2017 -m )( x^2 + 2016x + 2017 -n )( x^2 + 2016x + 2017 - p )

Vì P(Q(x)) =0 vô nghiệm nên: x^2 + 2016x + 2017 - m = 0 ;x^2 + 2016x + 2017 - m = 0; x^2 + 2016x + 2017 - m = 0 đều vô nghiệm 

=> \(\Delta_m=1008^2-\left(2017-m\right)< 0\)\(\Delta_n=1008^2-\left(2017-n\right)< 0\)\(\Delta_p=1008^2-\left(2017-p\right)< 0\)

=> \(2017-m>1008^2;2017-n>1008^2;2017-p>1008^2\)

=> P(2017) = ( 2017 - m) (2017 -n ) (2017 - p) > \(1008^2.1008^2.1008^2=1008^6\)

Vậy ta có điều phải chứng minh.