cho hàm số y=f(x) có đạo hàm f'(x)= (x-1)(2x-3). Tìm khoảng đồng biến, nghịch biến
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm tất cả các hàm số f: R -> R thoả mãn điều kiện: f((x - y)2) = x2 - 2yf(x) + ((f(y)2); ∀x, y ∈ R.
Gọi P(x,y) là phép thế của phương trình hàm đề bài.
P(x,x) cho ta: f(0)=x2-2xf(x)+f2(x). (Ở đây, f2(x) là f(x)f(x) chứ không phải là f(f(x))).
Đến đây cho x=0 ta suy ra: f(0)=f2(0). Ta được f(0)=0 hoặc f(0)=1.
Trường hợp 1: f(0)=0 suy ra: f2(x)-2xf(x)+x2=0 với mọi x thực. Suy ra: (f(x)-x)2=0 với mọi x nên f(x)=x với mọi x.
Thử lại thấy thỏa mãn.
Trường hợp 2: f(0)=1 tương tự trường hợp 1, ta suy ra với mọi x thì f(x)=x-1 hoặc f(x)=x+1.
P(x,0) suy ra: f(x2)=x2+1. Do đó với mọi x không âm thì f(x)=x+1.
P(0,y) suy ra: f(y2)=f2(y)-2y suy ra: (y+1)2=f2(y) với mọi y thực.
Nếu tồn tại a thực khác 0 sao cho: f(a)=a-1. Thay y=a ta được: (a+1)2=f2(a)=(a-1)2 suy ra:
a2+2a+1=a2-2a+1 suy ra: a=0(vô lí). Do đó: f(x)=x+1 với mọi x thực.
Thử lại không thỏa mãn. Vậy f(x)=x với mọi x.
10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
1000100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
\(g'\left(x\right)=2f'\left(x+1\right)-2\left(x+1\right)=2\left[f'\left(x+1\right)-\left(x+1\right)\right]\)
Từ đồ thị \(y=f'\left(x\right)\), ta tịnh tiến đồ thị qua trái \(1\)đơn vị ta thu được đồ thị của hàm \(y=f'\left(x+1\right)\).
Vẽ đồ thị hàm số \(y=x+1\).
Thấy ở đoạn \(\left[-2,2\right]\)đồ thị hàm số \(y=f'\left(x+1\right)\)nằm bên trên đồ thị hàm số \(y=x+1\).
ở nửa khoảng sau thì nằm bên dưới, hai đồ thị cắt nhau tại điểm \(\left(2,3\right)\).
Do đó \(maxg\left(x\right)\)trên đoạn \(\left[-2,3\right]\)đạt tại điểm \(x=2\).
\(g\left(x\right)_{max}=2f\left(2+1\right)-\left(2+1\right)^2=2f\left(3\right)-9\).
Chọn C.
ta có người thứ nhất có 7 cách người thứ 2 sẽ có 6 cách người thứ 3 sẽ có 5 cách.....
mà mỗi người có thể đổi chỗ cho nhau lên có số cách xếp là:
\(7!=1.2.3.4.5.6.7=5040\)
chọn (c) 5040
\(y=f\left(x\right)=\left(x-1\right)\left(2x-3\right)\) đồng biến khi: \(\left(x-1\right)\left(2x-3\right)>0\)
\(\Leftrightarrow x-1>0;2x-3>0\) hoặc \(x-1< 0;2x-3< 0\)
\(\Leftrightarrow x>1;x>\frac{3}{2}\) hoặc \(x< 1;x< \frac{3}{2}\)
\(\Leftrightarrow x>\frac{3}{2}\) hoặc \(x< 1\)
\(y=f\left(x\right)=\left(x-1\right)\left(2x-3\right)\) nghịch biến khi: \(\left(x-1\right)\left(2x-3\right)< 0\)
\(\Leftrightarrow x-1>0;2x-3< 0\) hoặc \(x-1< 0;2x-3>0\)
\(\Leftrightarrow x>1;x< \frac{3}{2}\) hoặc \(x< 1;x>\frac{3}{2}\)
\(\Leftrightarrow1< x< \frac{3}{2}\)