Tìm các số nguyên x,y thỏa mãn:
\(x+4xy-y=11\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=-\left|2x-\dfrac{1}{100}\right|+10\le10\)
Dấu ''='' xảy ra khi \(x=\dfrac{1}{100}:2=\dfrac{1}{200}\)
Chắc chắn sẽ có 2 hay thậm chí nhiều điểm mà khoảng cách giữa mỗi cặp điểm đều không lớn hơn \(\sqrt{5}\)bởi vì đề cho 126 điểm chứ không nói là 126 điểm phân biệt nên có thể có 2 hay nhiều điểm trùng nhau (khoảng cách giữa chúng bằng \(0< \sqrt{5}\))
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
ˆABD=ˆEBDABD^=EBD^(BD là tia phân giác của ˆABEABE^)
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
nên ˆBAD=ˆBEDBAD^=BED^(hai góc tương ứng)
mà ˆBAD=900BAD^=900(gt)
nên ˆBED=900BED^=900
Xét ΔADM vuông tại A và ΔEDC vuông tại E có
DA=DE(ΔABD=ΔEBD)
ˆADM=ˆEDCADM^=EDC^(hai góc đối đỉnh)
Do đó: ΔADM=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: AM=EC(Hai cạnh tương ứng)
c) Xét ΔBAE có BA=BE(gt)
nên ΔBAE cân tại B(Định nghĩa tam giác cân)
Suy ra: ˆBAE=ˆBEABAE^=BEA^(hai góc ở đáy)
mà ˆBAE+ˆMAE=1800BAE^+MAE^=1800(hai góc kề bù)
và ˆBEA+ˆAEC=1800BEA^+AEC^=1800(hai góc kề bù)
nên ˆAEC=ˆEAM
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
Lời giải:
a. Xét tam giác $ABH$ và $ACH$ có:
$AB=AC$ (do $ABC$ là tg cân)
$AH$ chung
$\widehat{AHB}=\widehat{AHC}=90^0$
$\Rightarrow \triangle AHB=\triangle AHC$ (ch-cgv)
$\Rightarrow HB=HC$.
b. Xét tam giác $AHD$ và $AHE$ có:
$AH$ chung
$\widehat{A_1}=\widehat{A_2}$ (do 2 tam giác bằng nhau phần a)
$\widehat{ADH}=\widehat{AEH}=90^0$
$\Rightarrow \triangle AHD=\triangle AHE$ (ch-gn)
$\Rightarrow \widehat{AHD}=\widehat{AHE}$
$\Rightarrow HA$ là tia phân giác góc $\widehat{DHE}$
c.
Từ tam giác bằng nhau phần b thì suy ra $AD=AE$
$\Rightarrow ADE$ là tam giác cân tại $A$
$\Rightarrow \widehat{AED}=\frac{1}{2}(180^0-\widehat{A})(1)$
Tam giác $ABC$ cân tại $A$
$\Rightarrow \widehat{ACB}=\frac{1}{2}(180^0-\widehat{A})(2)$
Từ $(1); (2)\Rightarrow \widehat{AED}=\widehat{ACB}$
Hai góc này ở vị trí đồng vị nên $DE\parallel BC$
1 , Đề bài thiếu
2 , \(\Delta ABC\)cân tại A = > \(\widehat{B}=\frac{180^0-\widehat{A}}{2}=\frac{180^0-80^0}{2}=\frac{100^0}{2}=50^0\)
chứng minh rằng nếu mỗi giá trị của dấu hiệu giảm đi 3 lần thì số trung bình cộng cũng giảm đi 3 lần:thiếu đề viết thêm để bổ sung!
\(\dfrac{x+1}{51}-1+\dfrac{x-1}{49}-1=\dfrac{13-x}{37}+1+\dfrac{x-5}{15}-3\)
\(\Leftrightarrow\dfrac{x-50}{51}+\dfrac{x-50}{49}=\dfrac{50-x}{37}+\dfrac{x-50}{15}\)
\(\Leftrightarrow\left(x-50\right)\left(\dfrac{1}{51}+\dfrac{1}{49}+\dfrac{1}{37}-\dfrac{1}{15}\ne0\right)=0\Leftrightarrow x=50\)
\(x+4xy-y=11\)
\(4x+16xy-4y=44\)
\(4x\left(1+4y\right)-\left(1+4y\right)=43\)
\(\left(4x-1\right)\left(4y+1\right)=43\)
Đến đây em tự xét các trường hợp nha