Cho tam giác ABC có góc A=120°.AA';BB';CC' theo thứ tự là tia phân giác của góc A ; góc B ; góc C
Chừng minh rằng : A'B' vuông góc với A'C'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x² + 2x + 2
= x² + 2x + 1 + 1
= (x² + 2x + 1) + 1
= (x + 1)² + 1
Do (x + 1)² ≥ 0 ∀x ∈ R
=> (x + 1)² + 1 ≥ 1 > 0 ∀x ∈ R
=> x² + 2x + 2 > 0 ∀x ∈ R
=> đpcm
cho tam giác có BC=2AB .Gọi M là trung điểm của BC, D là trung điểm của BM. Chứng minh rằng AC = 2AD
Xét ΔDBA và ΔABC có
BD/BA=BA/BC(BD/BM=1/2=BA/BC)
góc B chung
Do đó: ΔDBA đồng dạng với ΔABC
=>AD/AC=BA/BC=1/2
=>AC=2AD