ai thông minh giúp mk vs
Chứng minh rằng n4 + 2n3 - n2 -2n chia hết cho 24 với mọi n thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(X=\frac{-19}{23}=-1+\frac{4}{23}\)
\(Y=\frac{-25}{29}=-1+\frac{4}{29}\)
Mà \(\frac{4}{23}>\frac{4}{29}\Rightarrow X>Y\)
Vậy \(X>Y\)
a, Để x là số dương thì \(a-3;a\) cùng dấu
\(\Rightarrow\hept{\begin{cases}a-3>0\\a>0\end{cases}}\) hoặc \(\hept{\begin{cases}a-3< 0\\a< 0\end{cases}}\)
\(\left(+\right)\hept{\begin{cases}a-3>0\\a>0\end{cases}\Rightarrow\hept{\begin{cases}a>3\\a>0\end{cases}\Rightarrow}a>3}\)
\(\left(+\right)\hept{\begin{cases}a-3< 0\\a< 0\end{cases}\Rightarrow\hept{\begin{cases}a< 3\\a< 0\end{cases}\Rightarrow}a< 0}\)
Vậy \(a>3\) hoặc \(a< 0\) thì y là số dương
b, Để y là số âm thì \(a-3;a\) trái dấu
\(\Rightarrow\hept{\begin{cases}a-3< 0\\a>0\end{cases}}\) hoặc \(\hept{\begin{cases}a-3>0\\a< 0\end{cases}}\)
\(\left(+\right)\hept{\begin{cases}a-3< 0\\a>0\end{cases}\Rightarrow\hept{\begin{cases}a< 3\\a>0\end{cases}\Rightarrow}0< a< 3}\)
\(\left(+\right)\hept{\begin{cases}a-3>0\\a< 0\end{cases}\Rightarrow\hept{\begin{cases}a>3\\a< 0\end{cases}}}\) (vô lí )
Vậy \(0< a< 3\) thì y là số âm
c, Ta có \(y=\frac{a-3}{a}=\frac{a}{a}-\frac{3}{a}=1-\frac{3}{a}\)
Để y là số nguyên thì \(1-\frac{3}{a}\) nguyên
\(\Leftrightarrow\frac{3}{a}\) nguyên
\(\Rightarrow a\in\text{Ư}\left(3\right)=\left\{-3;-1;1;3\right\}\)
Vậy \(a\in\left\{-3;-1;1;3\right\}\) thì y nguyên
Giải:
a) Ta có \(y=\frac{a-3}{a}=\frac{a}{a}-\frac{3}{a}=1-\frac{3}{a}\rightarrow y=1-\frac{3}{a}\)
Để \(y>0\)thì \(1-\frac{3}{a}>0\rightarrow\frac{3}{a}< 1\Rightarrow a>3\)
b) Để \(y< 0\)thì \(1-\frac{3}{a}< 0\rightarrow\frac{3}{a}>1\rightarrow0< a< 3\)
c) Để \(y\in Z\) ta xét 2 TH :
TH1: \(y=1-\frac{3}{a}=0\)
\(\rightarrow a=3\)
Th2: \(y< 0\)hoặc \(y>0\)
\(\rightarrow\frac{3}{a}\in Z\rightarrow a\inƯ\left(3\right)=\left\{-1,1,-3,3\right\}\)
Kết luận :...
( Vì đề bài chưa đúng cho lắm mong online đừng trừ điểm)
P(x) = 0 <=> x - 32 + 1 = 0
<=> x - 9 + 1 = 0
<=> x - 8 =0
<=> x =8
Vậy 8 là nghiệm của đa thức p(x)
a,Gọi a,b,c là 3 phần của số 6200.Từ giả thiết ta có:\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và \(a+b+c=6200\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{6200}{10}=620\)
Từ \(\frac{a}{2}=620\Rightarrow a=620.2=1240\)
\(\frac{b}{3}=620\Rightarrow b=620.3=1860\)
\(\frac{c}{5}=620\Rightarrow c=620.5=3100\)
Vậy ba phần của 6200 tỉ lệ thuận với 2,3,5 là 1240;1860;3100
b,Gọi x,y,z là 3 phần của 6200.Từ giả thiết ta có:\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\) và \(x+y+z=6200\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}=\frac{6200}{\frac{31}{30}}=6000\)
Từ \(\frac{x}{\frac{1}{2}}=6000\Rightarrow x=3000\)
\(\frac{y}{\frac{1}{3}}=6000\Rightarrow y=2000\)
\(\frac{z}{\frac{1}{5}}=6000\Rightarrow z=1200\)
Vậy ba phần của 6200 tỉ lệ nghịch với 2,3,5 là 3000;2000;1200
a)( x + 3 )3 - x(3x + 1)2+ (2x + 1)(4x2 - 2x +1 )- 3x = 54
VT=3x2+23x+28
=>3x2+23x+28=54
=>3x2+23x+28-54=0
=>3x2+23x-26=0
=>(x-1)(3x+26)=0
=>x-1=0 hoặc 3x+26=0
=>x=1 hoặc x=\(-\frac{26}{3}\)
b)( x- 3 )3 - ( x - 3 ) ( x2 + 3x + 9 ) + 6 ( x + 1 )2 + 6x2 = -33
VT=3x2+39x+6
=>3x2+39x+6=-33
=>3x2+39x+39=0
=>3(x2+13+13)=0
=>x2+13+13=0
Tới đây dễ rồi nhé nếu bạn ko làm đc thì nhắn tin lại với mình :)
Để n4 + 2n3 - n2 - 2n chia hết cho 24 thì phải chia hết cho 4 và 6
Ta có \(n^4+2n^3-n^2-2n=n^2\left(n^2-1\right)+2n\left(n^2-1\right)\)
\(=\left(n^2-1\right)\left(n^2+2\right)=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Biểu thức trên có tích là 4 số nguyên liên tiếp nên sẽ chia hết cho 4
Để biểu thức chia hết cho 6 thì phải chia hết cho 2 và 3.Biểu thức trên là tích của 4 số nguyên liên tiếp nên sẽ chia hết cho 2 va cũng có ít nhất 1 số chia hết cho 3 nên sẽ chia hết cho 6
Vậy biểu thức chia hết cho 24
Để n4 + 2n3 - n2 - 2n chia hết cho 24 thì phải chia hết cho 4 và 6
Ta có
�
4
+
2
�
3
−
�
2
−
2
�
=
�
2
(
�
2
−
1
)
+
2
�
(
�
2
−
1
)
n
4
+2n
3
−n
2
−2n=n
2
(n
2
−1)+2n(n
2
−1)
=
(
�
2
−
1
)
(
�
2
+
2
)
=
(
�
−
1
)
�
(
�
+
1
)
(
�
+
2
)
=(n
2
−1)(n
2
+2)=(n−1)n(n+1)(n+2)
Biểu thức trên có tích là 4 số nguyên liên tiếp nên sẽ chia hết cho 4
Để biểu thức chia hết cho 6 thì phải chia hết cho 2 và 3.Biểu thức trên là tích của 4 số nguyên liên tiếp nên sẽ chia hết cho 2 va cũng có ít nhất 1 số chia hết cho 3 nên sẽ chia hết cho 6
Vậy biểu thức chia hết cho 24
Đúng ko nek