cho tam giác ABC vuông tại A, kẻ đường cao AH.Từ H dựng HM,HN lần lượt vuông góc với AC,AB. Chứng minh CM.BN.BC=AH^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án:
Giải thích các bước giải:
Giả sử AB là cây cần do, CD là cọc EF là khoảng cách từ mắt tới chân.
∆KDF ∽ ∆HBF
=> HBKD=HFKFHBKD=HFKF
=> HB = HF.KDKFHF.KDKF
mà HF = HK + KF =AC + CE = 15 + 0,8 = 15.8m
KD = CD – CK = CD – EF = 2 – 1,6 = 0,4 m
Do đó: HB = 7,9 m
Vậy chiều cao của cây là 7,9
ĐK: \(x\ge2\)
Đặt: \(t=\sqrt{x-2}\ge0\)
<=> \(t^2+2=x\)
khi đó:
\(A=\frac{t^2+2+3t}{t^2+2+4t+1}=\frac{t^2+3t+2}{t^2+4t+3}=\frac{\left(t+1\right)\left(t+2\right)}{\left(t+1\right)\left(t+3\right)}=\frac{t+2}{t+3}=1-\frac{1}{t+3}\ge1-\frac{1}{3}=\frac{2}{3}\)
Dấu "=" xảy ra <=> t = 0 hay x = 2 thỏa mãn
Vậy min A = 2/3 tại x = 2.
\(4\le\left(a^2+b^2\right)\left(4-a^2-b^2\right)\)\(\Leftrightarrow\)\(\left(a^2+b^2-2\right)^2\le0\)
\(\Rightarrow\)\(b=\sqrt{2-a^2}\)
có : \(a\le\frac{1}{2}a^2+\frac{1}{2}\)
\(M=\frac{1}{a}+\frac{1}{\sqrt{2-a^2}}-a-\sqrt{2-a^2}\ge\frac{1}{a}+\frac{2}{3-a^2}-\frac{a^2}{2}-\frac{1}{2}-\frac{3-a^2}{2}\)
\(\ge\frac{2}{a^2+1}+\frac{2}{3-a^2}-2\ge\frac{8}{a^2+1+3-a^2}-2=0\)
Theo AM - GM và Bunhiacopski ta có được
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2};\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\ge\frac{8}{\left(x+y\right)^2}\)
Khi đó \(LHS\ge\left[\frac{\left(x+y\right)^2}{2}+z^2\right]\left[\frac{8}{\left(x+y\right)^2}+\frac{1}{z^2}\right]\)
\(\)\(=\left[\frac{1}{2}+\left(\frac{z}{x+y}\right)^2\right]\left[8+\left(\frac{x+y}{z}\right)^2\right]\)
Đặt \(t=\frac{z}{x+y}\ge1\)
Khi đó:\(LHS\ge\left(\frac{1}{2}+t^2\right)\left(8+\frac{1}{t^2}\right)=8t^2+\frac{1}{2t^2}+5\)
\(=\left(\frac{1}{2t^2}+\frac{t^2}{2}\right)+\frac{15t^2}{2}+5\ge\frac{27}{2}\)
Vậy ta có đpcm
Ta có:
\(VT-VP=\frac{\left(x^2+y^2\right)\left(\Sigma xy\right)\left(\Sigma x\right)\left[z\left(x+y\right)-xy\right]\left(z-x-y\right)}{x^2y^2z^2\left(x+y\right)^2}+\frac{\left(x-y\right)^2\left(2x+y\right)^2\left(x+2y\right)^2}{2x^2y^2\left(x+y\right)^2}\ge0\)
Vì \(z\left(x+y\right)-xy\ge\left(x+y\right)^2-xy\ge4xy-xy>0\)