Giải phương trình : \(\frac{2x}{x-2}\) - \(\frac{3x+10}{x^2 -4}\) = \(\frac{x}{x+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: x > = 3
pt <=> \(x^2-5x+4+\left(\sqrt{2x+1}-3\right)+\left(\sqrt{x-3}-1\right)=0\)
<=> \(\left(x-1\right)\left(x-4\right)+\frac{2\left(x-4\right)}{\sqrt{2x+1}+3}+\frac{x-4}{\sqrt{x-3}+1}=0\)
<=> \(\left(x-4\right)\left(\left(x-1\right)+\frac{2}{\sqrt{2x+1}+3}+\frac{1}{\sqrt{x-3}+1}\right)=0\)
<=> x - 4 = 0 vì \(\left(x-1\right)+\frac{2}{\sqrt{2x+1}+3}+\frac{1}{\sqrt{x-3}+1}>0;\forall x\ge3\)
<=> x = 4 tm
Vậy:...
\(t=\sqrt{2x-3}=>\frac{t^2+3}{2}=x\)
\(=>P=\frac{t^2+3}{2}-2t=\frac{t^2-4t+3}{2}=\frac{\left(t-2\right)^2-1}{2}=\frac{\left(t-2\right)^2}{2}-\frac{1}{2}\)
ta có \(\frac{\left(t-2\right)^2}{2}\ge0\left(\forall t\right)\)
\(=>\frac{\left(t-2\right)^2}{2}-\frac{1}{2}\ge-\frac{1}{2}\left(\forall t\right)\)
minP=-1/2
dấu = xảy ra khi x=7/2
a) \(t=\sqrt{2x-3}\ge0\)
<=> \(t^2=2x-3\)
<=> \(x=\frac{t^2+3}{2}\)
=> \(P=\frac{t^2+3}{2}-2t\)
b) khi đó: \(P=\frac{t^2+3}{2}-2t=\frac{t^2-4t+3}{2}=\frac{\left(t-2\right)^2-1}{2}\ge-\frac{1}{2}\)
Dấu "=" xảy ra <=> t = 2 khi đó: x = 7/2
\(\left(\sqrt{a}+1\right)\left(\sqrt{b}+1\right)=4\Leftrightarrow\sqrt{ab}+\sqrt{a}+\sqrt{b}=3\)
\(\text{Ta có:}M\ge a+b\Rightarrow2M+2\ge a+b+a+1+b+1\ge2\left(\sqrt{ab}+\sqrt{a}+\sqrt{b}\right)\left(\text{theo cô si}\right)=6\)
\(\Rightarrow M\ge2\left(\text{dấu "=" xảy ra khi:}a=b=1\right)\)
Ta có: \(3=x^2+y^2+z^2\ge xy+yz+xz\ge\frac{\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}{3}\)
=> \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le3\)
\(M=\frac{xyz}{x^2+yz}+\frac{xyz}{y^2+zx}+\frac{xyz}{z^2+xy}\)
\(\le\frac{xyz}{2x\sqrt{yz}}+\frac{xyz}{2y\sqrt{xz}}+\frac{xyz}{2z\sqrt{xy}}\)
\(=\frac{1}{2}\left(\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\right)\le\frac{3}{2}\)
Dấu "=" xảy ra <=> x = y = z=1
\(\frac{2x}{x-2}-\frac{3x+10}{x^2-4}=\frac{x}{x+2}\left(x\ne\pm2\right)\)
\(\Leftrightarrow\frac{2x}{x-2}-\frac{3x+10}{\left(x-2\right)\left(x+2\right)}-\frac{x}{x+2}=0\)
\(\Leftrightarrow\frac{2x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{3x+10}{\left(x-2\right)\left(x+2\right)}-\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{2x^2+4x}{\left(x-2\right)\left(x+2\right)}-\frac{3x+10}{\left(x-2\right)\left(x+2\right)}-\frac{x^2-2x}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{2x^2+4x-3x-10-x^2+2x}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{x^2+3x-10}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{x^2+5x-2x-10}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{\left(x+5\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=0\)
=> x+5=0
<=> x=-5(tmđk)
Vậy x=-5 là nghiệm của phương trình
\(\frac{2x}{x-2}-\frac{3x+10}{x^2-4}=\frac{x}{x+2}\) ( đkxđ : \(x\ne\pm2\))
\(\Leftrightarrow\frac{2x}{x-2}-\frac{3x+10}{\left(x+2\right)\left(x-2\right)}=\frac{x}{x+2}\)
\(\Leftrightarrow\frac{2x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{3x+10}{\left(x+2\right)\left(x-2\right)}=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\)
\(\Leftrightarrow2x^2+4x-3x-10=x^2-2x\)
\(\Leftrightarrow2x^2+4x-3x-10-x^2+2x=0\)
\(\Leftrightarrow x^2+3x-10=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)
\(x\ne\pm2\)=> x = -5