D=\(\frac{1}{x^2-x}+\frac{1}{x^2-3x+2}+...+\frac{1}{x^2-9x+20}\)
Tính p
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-2}{3}-\frac{2x-3}{4}=x-1\)
\(\Leftrightarrow\frac{4x-8}{12}-\frac{6x-9}{12}=\frac{12x-12}{12}\)
\(\Leftrightarrow-2x+1=12x-12\Leftrightarrow-14x-11=0\Leftrightarrow x=-\frac{11}{14}\)
Vậy tập nghiệm của phương trình là S = { -11/14 }
\(\frac{x}{2}-\frac{2x}{3}+\frac{1}{4}=\frac{2}{3}\)
\(\Leftrightarrow\frac{6x}{12}-\frac{8x}{12}+\frac{3}{12}=\frac{8}{12}\)
\(\Leftrightarrow-2x=5\Leftrightarrow x=-\frac{5}{2}\)
Vậy tập nghiệm của phương trình là S = { -5/2 }
\(\frac{3x}{x-2}-\frac{x}{x-5}=\frac{3x}{\left(x-2\right)\left(x-5\right)}ĐK:x\ne2;5\)
\(\Leftrightarrow\frac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\frac{x\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}=\frac{3x}{\left(x-2\right)\left(x-5\right)}\)
\(\Leftrightarrow3x^2-15x-x^2+2x=3x\)
\(\Leftrightarrow2x^2-10x=0\Leftrightarrow2x\left(x-5\right)=0\Leftrightarrow x=0;5\left(ktm\right)\)
Vậy tập nghiệm của phương trình là S = { 0 }
Kẻ \(CH//AG\)và các điểm như hình vẽ.
Trong tam giác \(BCF\): \(\widehat{FBC}+\widehat{BCF}+\widehat{CFB}=180^o\).
Trong tam giác \(ADE\): \(\widehat{DAE}+\widehat{DEA}+\widehat{ADE}=180^o\)
\(BC//AD\Rightarrow\widehat{FBC}=\widehat{EDA}\)(Hai góc so le trong)
\(CH//AG\Rightarrow\widehat{CFB}=\widehat{AED}\)(Hai góc so le trong)
Suy ra \(\widehat{BCF}=\widehat{DAE}\).
Xét tam giác \(DAE\)và tam giác \(BCF\)có:
\(\widehat{BCF}=\widehat{DAE}\)(cmt)
\(DA=BC\)(tính chất hình bình hành)
\(\widehat{CBF}=\widehat{ADE}\)(cmt)
Suy ra \(\Delta DAE=\Delta BCF\).
Suy ra \(DE=BF\)(hai cạnh tương ứng).
Có: \(\frac{DG}{GC}=\frac{DE}{EF}=\frac{DE}{EB-BF}=\frac{DE}{EB-DE}\Rightarrow\frac{GC}{DG}=\frac{EB-DE}{DE}=4-1=3\Rightarrow\frac{DG}{GC}=\frac{1}{3}\)
Ta có: \(M=\frac{1}{\left(x-2\right).\left(x-3\right)}+\frac{1}{\left(x-3\right).\left(x-4\right)}+\frac{1}{\left(x-4\right).\left(x-5\right)}+\frac{1}{\left(x-5\right).\left(x-6\right)}\)
\(\Leftrightarrow M=\frac{1}{x-2}-\frac{1}{x-3}+\frac{1}{x-3}-\frac{1}{x-4}+\frac{1}{x-4}-\frac{1}{x-5}+\frac{1}{x-5}-\frac{1}{x-6}\)
\(\Leftrightarrow M=\frac{1}{x-2}-\frac{1}{x-6}\)
\(\Leftrightarrow M=\frac{x-6-x+2}{\left(x-2\right).\left(x-6\right)}\)
\(\Leftrightarrow M=-\frac{4}{x^2-8x+12}\)
Vì \(abc=2\)nên ta có:
\(M=\frac{a}{ab+a+2}+\frac{b}{bc+b+1}+\frac{2c}{ac+2c+2}\)
\(=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{abc.c}{ac+abc.c+abc}\)
\(=\frac{a}{a\left(b+1+bc\right)}+\frac{b}{bc+b+1}+\frac{abc^2}{ac\left(1+bc+b\right)}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+c+1}\)
\(=\frac{1+b+bc}{bc+c+1}=1\)
Vẫn tách như trên nha cậu .
\(=\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+...+\frac{1}{x-5}-\frac{1}{x-4}\)
\(=-\frac{1}{x}+\frac{1}{x-5}=\frac{x-x+5}{x\left(x-5\right)}=\frac{5}{x\left(x-5\right)}\)
Vậy \(D=\frac{5}{x\left(x-5\right)}\)
Tách như bước ở dấu "=" thứ hai nhé bước mà có \(\frac{1}{x\left(x-1\right)}\)nhé