Hai vòi nước cùng chảy vào một bể không có nước thì sau 6 giờ 40 phút đầy bể. Biết rằng năng suất vòi một gấp đôi năng suất vòi hai. Hỏi nếu chảy riêng thì mỗi vòi chảy đầy bể nước đó trong bao nhiêu giờ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét từ giác AMNC có
(Ac là tiếp tuyến của (O) ,
(MN vuông góc với CD) => \(\widehat{CAM}+\widehat{CNM}\)=180
=> AMNC nội tiếp
Xét tứ giác BMND có =90 ( BD là tiếp tuyến của (O) , \(\widehat{CND}\)=90 ( MN vuông góc với CD)
=> \(\widehat{MND}+\widehat{NAC}\)=180
=> Tứ giác BDMN nội tiếp
b, Ta có \(\widehat{CMN}=\widehat{NAC}\) (cùng chắn CN)
=> = cung AN(1)
Ta cũng có\(\widehat{NMD}+\widehat{NMD}\) (cùng chắn cung ND)
\(\widehat{NMD}\)= cung NB(2)
Từ (1) và (2) => \(\widehat{CMD}+\widehat{NMD}\)= (cung AN + cung NB)
=> \(\widehat{CMD}\)= cung AB = =90
=> tam giác CMD vuông tại M
Vì NMBD nội tiếp => \(\widehat{NDM}+\widehat{NBM}\) ( góc nội tiếp cùng chắn cung AM)
Mà \(\widehat{MCD}+\widehat{NBM}\)=90
=> \(\widehat{MCD}+\widehat{NBM}\)=90 (1)
Mặt khác \(\widehat{NAB}+\widehat{NBA}\)=90 (2)
Từ (1) và (2) => \(\widehat{MCD}=\widehat{NAB}\)
Xét tam giác ANB và CMD ta cs
\(\widehat{ANB}=\widehat{CMD}\) (=90)
\(\widehat{MCD}=\widehat{NAD}\)
=> 2 tam giác này bằng nhau
Đành chơi trò như này vậy:
\(A=\frac{x^2-3x+2019}{x^2}=1-\frac{3}{x}+\frac{2019}{x^2}\)
Đặt \(a=\frac{1}{x}\)
Khi đó:\(A=2019a^2-3a+1=2019\left(a^2-2\cdot\frac{3}{4038}\cdot a+\frac{9}{4038^2}\right)+\frac{2689}{2692}\)
\(=2019\left(a-\frac{3}{4038}\right)^2+\frac{2689}{2692}\ge\frac{2689}{2692}\)
Đẳng thức xảy ra tại a=1/1346