Cho x,y,z dương thỏa mãn \(x^2+y^2+z^2=3\) . Chứng minh:
\(\frac{1}{4-\sqrt{xy}}+\frac{1}{4-\sqrt{yz}}+\frac{1}{4-\sqrt{zx}}\le1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(0\le x,y,z\le1\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\Rightarrow xy+1\ge x+y\)
Tương tự:
\(yz+1\ge y+z;zx+1\ge z+x\)
Khi đó
\(LHS\le\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\le\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=2\)
Không chắc nha !
\(BĐT\Leftrightarrow\frac{2-2xy}{2+x^2+y^2}+\frac{2x^2-2y}{1+2x^2+y^2}+\frac{2y^2-2x}{1+x^2+2y^2}\ge0\)
\(\Leftrightarrow1-\frac{2-2xy}{2+x^2+y^2}+1-\frac{2x^2-2y}{1+2x^2+y^2}+1-\frac{2y^2-2x}{1+x^2+2y^2}\le3\)
\(\Leftrightarrow\frac{\left(x+y\right)^2}{2+x^2+y^2}+\frac{\left(y+1\right)^2}{1+2x^2+y^2}+\frac{\left(x+1\right)^2}{1+x^2+2y^2}\le3\)(*)
Theo bất đẳng thức Bunyakovsky dạng phân thức: \(\frac{\left(x+y\right)^2}{2+x^2+y^2}\le\frac{x^2}{1+x^2}+\frac{y^2}{1+y^2}\)(1); \(\frac{\left(y+1\right)^2}{1+2x^2+y^2}\le\frac{y^2}{x^2+y^2}+\frac{1}{x^2+1}\)(2); \(\frac{\left(x+1\right)^2}{1+x^2+2y^2}\le\frac{x^2}{x^2+y^2}+\frac{1}{y^2+1}\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{\left(x+y\right)^2}{2+x^2+y^2}+\frac{\left(y+1\right)^2}{1+2x^2+y^2}+\frac{\left(x+1\right)^2}{1+x^2+2y^2}\le\)\(\left(\frac{x^2}{x^2+y^2}+\frac{y^2}{x^2+y^2}\right)+\left(\frac{1}{y^2+1}+\frac{y^2}{y^2+1}\right)+\left(\frac{1}{x^2+1}+\frac{x^2}{x^2+1}\right)=3\)
Như vậy (*) đúng
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi x = y = 1
\(\frac{1-xy}{2+x^2+y^2}+\frac{x^2-y^2}{1+2x^2+y^2}+\frac{y^2-x}{1+x^2+2y^2}\ge0\)
\(\Leftrightarrow\frac{1-xy+3x^2-2y^2-2y^2+x}{\left(1+x^2+y^2\right)}\ge0\)
\(\Leftrightarrow\frac{2\left(1+x^2+y^2\right)+x^2}{1+x^2+y^2}\ge0\)
Vì x2 và y2 >0
\(\Rightarrow2+\frac{x^2}{1+x^2+y^2}\ge0\)(luôn đúng)
Đặt \(\sqrt{x}=a\Rightarrow a^2=x\)
Khi đó ta có được:
\(A=\frac{a-2}{a^2+5}\Rightarrow A\cdot a^2+5\cdot A-a+2=0\)
\(\Leftrightarrow A\cdot a^2-a+\left(5A+2\right)=0\)
\(\Delta=1-4A\left(5A+2\right)=-20A^2-8A+1\ge0\)
\(\Rightarrow\left(1-10A\right)\left(2A+1\right)\ge0\Rightarrow-\frac{1}{2}\le A\le\frac{1}{10}\)
Trả lời:
\(G=\frac{\sqrt{1+2\sqrt{27\sqrt{2}-38}}-\sqrt{5-3\sqrt{2}}}{\sqrt{3\sqrt{2}-4}}\)
\(G=\frac{\sqrt{1+2\sqrt{27\sqrt{2}-38}-\sqrt{5-3\sqrt{2}}}}{\sqrt{3\sqrt{2}-4}}\times\frac{\sqrt{3\sqrt{2}-4}}{\sqrt{3\sqrt{2}-4}}\)
\(G=\frac{\sqrt{\left(1+2\sqrt{27\sqrt{2}-38}\right)\times\left(\sqrt{3\sqrt{2}-4}\right)}-\sqrt{\left(5-3\sqrt{2}\right)\times\left(3\sqrt{2}-4\right)}}{3\sqrt{2}-4}\)
\(G=\frac{\sqrt{3\sqrt{2}-4+6\sqrt{\left(27\sqrt{2}-38\right)\times2}-8\sqrt{27\sqrt{2}-38}}-\sqrt{15\sqrt{2}-20-18+12\sqrt{2}}}{3\sqrt{2}-4}\)
\(G=\frac{\sqrt{3\sqrt{2}-4+6\sqrt{54\sqrt{2}-76}-8\sqrt{27\sqrt{2}-38}}-\sqrt{27\sqrt{2}-38}}{3\sqrt{2}-4}\)
\(G=\frac{\left(\sqrt{3\sqrt{2}-4+6\sqrt{54\sqrt{2}-76}-8\sqrt{27\sqrt{2}-38}}-\sqrt{27\sqrt{2}-38}\right)\times\left(3\sqrt{2}+4\right)}{\left(3\sqrt{2}-4\right)\times\left(3\sqrt{2}+4\right)}\)
\(G\approx1\)
Trả lời:
a) a và b có thể là các số vô tỉ
b) a và b không thể là các số vô tỉ
c) a và b không thể là các số vô tỉ
Đây là e nghĩ vậy chớ ko bt đúng sai ra sao đâu ạ!
Gợi ý bài làm này!
+) Xét các số có thể là số vô tỉ thì đưa ra ví dụ cụ thể
+) Xét các số là không là số vô tỉ thì chứng minh
a) a; b có thể là số vô tỉ
Chứng minh: Lấy VD: a = \(\sqrt{2}\); b= \(\sqrt{3}\) là 2 số vô tỉ
\(\sqrt{2}.\sqrt{3}=\sqrt{6};\frac{\sqrt{2}}{\sqrt{3}}=\frac{\sqrt{6}}{3}\)thỏa mãn 2 số vô tỉ
b) a; b không thể là số vô tỉ
Chứng minh:
\(\frac{a}{b}\)là số hữu tỉ => tồn tại số hữu tỉ m để: \(\frac{a}{b}=m\)<=> a = mb
khi đó: \(a+b=mb+b=\left(m+1\right)b\) là số hữu tỉ
mà m là số hữu tỉ => m + 1 là số hữu tỉ => b là số hữu tỉ
=> a là số hữu tỉ
c) a ; b không thể là số vô tỉ
Chứng minh:
\(a^2;b^2\)là số hữu tỉ
=> \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)là số hữu tỉ mà a + b là số hữu tỉ => a - b là số hữu tỉ
Đặt: a + b = m; a - b = n => m; n là 2 số hữu tỉ
=> \(a=\frac{m+n}{2};b=\frac{m-n}{2}\) là 2 số hữu tỉ
Ta viết lại bất đẳng thức cần chứng minh thành: \(\frac{1}{\sqrt{xy}-4}+\frac{1}{\sqrt{yz}-4}+\frac{1}{\sqrt{zx}-4}\ge-1\)(*)
Theo BĐT Cauchy, ta có: \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=x+y+z\)
Mà ta có: \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\Rightarrow x+y+z\le3\)nên \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le3\)
Theo BĐT Bunyakovsky dạng phân thức: \(\frac{1}{\sqrt{xy}-4}+\frac{1}{\sqrt{yz}-4}+\frac{1}{\sqrt{zx}-4}\)\(\ge\frac{9}{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}-12}\ge\frac{9}{3-12}=-1\)
Suy ra (*) đúng
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi x = y = z = 1
Ine CTV
dễ thấy \(x,y,z< \sqrt{3}\)\(\Rightarrow\)\(\sqrt{xy}-4< 0\); ...
cauchy-schwarz chỉ dùng cho mẫu dương nha em, bài này lúc trước anh cũng lam sai, noi trước để đừng lục lại :D