Cho tam giác ABC nhọn có trực tâm H. Gọi O, K, L lần lượt là tâm ngoại tiếp các tam giác ABC, HCA, HAB. CK cắt đường tròn ngoại tiếp tam giác AKH tại M khác K. BL cắt đường tròn ngoại tiếp tam giác ABH tại N khác L. HM, HN | lần lượt cắt CA, AB tại E, F, G thuộc BC sao cho HG vuông góc OA. Chứng minh rằng | E, F, G thẳng hàng.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
N
0
NM
Nguyễn Minh Quang
Giáo viên
19 tháng 8 2021
vì \(2^n-1\) là số nguyên tố nên tổng các ước của \(2^n-1\) là \(1+2^n-1\)
tổng các ước của \(2^{n-1}\left(2^n-1\right)\) là \(\displaystyle\Sigma ^{n-1}_{i=0}(2^i)\times (1+2^n-1)\)\(=\left(2^n-1\right)\times2^n=2\left[2^{n-1}\left(2^n-1\right)\right]\)
Vậy số đã cho là số hoàn hảo
23 tháng 11 2021
Do A⊂BA⊂B nên nếu X⊂A⇒X⊂BX⊂A⇒X⊂B
Do đó ta chỉ cần tìm tập còn của tập A
Tập con của A gồm: ∅;{1};{2};{1;2}∅;{1};{2};{1;2} có 4 tập thỏa mãn
DN
0
NP
0
A B C H O K L N M E F G
Trên EF lấy điểm G sao cho \(HG\perp OA\) (Định nghĩa lại điểm G)
Ta thấy đường tròn (HAC) và (O) đối xứng nhau qua AC, suy ra AOCK là hình thoi
Từ đó \(\widehat{OAM}=180^0-\widehat{AMK}=\widehat{AHK}=90^0-\widehat{ACH}=\widehat{BAC}\)
Suy ra \(\widehat{CAM}=\widehat{BAO}=\widehat{CAH}\) hay AC là phân giác của \(\widehat{HAM}\)
Vì MK là phân giác ngoài của \(\widehat{AMH}\) do K là điểm chính giữa cung AMH nên C là tâm bàng tiếp góc A của \(\Delta AHM\)
Do đó \(\frac{CE}{CA}=\frac{HE}{HA}\). Hoàn toàn tương tự \(\frac{BA}{BF}=\frac{HA}{HF}\)
Mặt khác AMHN là hình bình hành do (AKH),(ALH) đối xứng nhau qua trung điểm AH, đồng thời
\(\widehat{MAN}=\widehat{MHN}=\widehat{AHM}+\widehat{AHN}=180^0-\widehat{AOB}+180^0-\widehat{AOC}=2\widehat{BAC}=2\widehat{OAM}\)
Suy ra AO là phân giác của \(\widehat{MAN}\), mà \(HG\perp AO\) nên HG là phân giác ngoài của \(\widehat{MHN}\)
Do vậy \(\frac{GF}{GE}=\frac{HF}{HE}\). Vậy ta có \(\frac{CE}{CA}.\frac{BA}{BF}.\frac{GF}{GE}=1\), suy ra G,B,C thẳng hàng.