Với mọi m, n ϵ Z, chứng minh:
m⁵n - mn⁵ ⋮ 30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=104-100+96-92+88-84+...-12+8
=(104-100)+(96-92)+...+(16-12)+8
=4+4+...+4+8
\(=4\cdot12+8=48+8=56\)
`8 . 2^(x - 5) = 16^7`
`=> 2^3 . 2^(x - 5) = (2^4)^7`
`=> 2^(3 + x - 5) = 2^28`
`=> x - 2 = 28`
`=> x=28+2`
`=>x=30`
Vậy: `x=30`
\(8\cdot2^{x-5}=16^7\)
=>\(2^3\cdot2^{x-5}=2^{28}\)
=>\(2^{x-2}=2^{28}\)
=>x-2=28
=>x=2+28=30
a: ĐKXĐ: x>=1/2
\(\sqrt{2x-1}=5\)
=>\(2x-1=5^2=25\)
=>2x=26
=>x=13(nhận)
b: ĐKXĐ: \(x>=-\dfrac{2}{3}\)
\(\sqrt{3x+2}=\dfrac{1}{4}\)
=>\(3x+2=\left(\dfrac{1}{4}\right)^2=\dfrac{1}{16}\)
=>\(3x=\dfrac{1}{16}-2=\dfrac{1}{16}-\dfrac{32}{16}=-\dfrac{31}{16}\)
=>\(x=-\dfrac{31}{48}\left(nhận\right)\)
c: \(\sqrt{x^2+\dfrac{1}{4}}=\sqrt{\dfrac{49}{81}}\)
=>\(x^2+\dfrac{1}{4}=\dfrac{49}{81}\)
=>\(x^2=\dfrac{49}{81}-\dfrac{1}{4}=\dfrac{115}{324}\)
=>\(x=\pm\dfrac{\sqrt{115}}{18}\)
\(1\dfrac{1}{5}:\left\{\dfrac{5}{8}+\left[\dfrac{5}{3}-\left(-\dfrac{1}{4}\right)\right]\cdot\dfrac{9}{2^2}\right\}\)
\(=\dfrac{6}{5}:\left\{\dfrac{5}{8}+\left(\dfrac{5}{3}+\dfrac{1}{4}\right)\cdot\dfrac{9}{4}\right\}\)
\(=\dfrac{6}{5}:\left\{\dfrac{5}{8}+\dfrac{23}{12}\cdot\dfrac{9}{4}\right\}\)
\(=\dfrac{6}{5}:\left\{\dfrac{5}{8}+\dfrac{23\cdot3}{16}\right\}=\dfrac{6}{5}:\left(\dfrac{10}{16}+\dfrac{69}{16}\right)\)
\(=\dfrac{6}{5}\cdot\dfrac{16}{79}=\dfrac{96}{395}\)
`n(n+1)(2n+1) = n(n+1)(n+2+n-1) = n(n+1)(n+2) + (n-1)n(n+1) `
Ta có:
`n(n+1)(n+2)` là các số liên tiếp `=> {(n(n+1)(n+2) vdots 2),(n(n+1)(n+2) vdots 3):}`
`=> n(n+1)(n+2) vdots 6`
`(n-1)n(n+1)` là các số liên tiếp `=> {((n-1)n(n+1) vdots 2),((n-1)n(n+1) vdots 3):}`
`=> (n-1)n(n+1) vdots 6`
`=> n(n+1)(n+2) + (n-1)n(n+1) vdots 6`
`=> n(n+1)(2n+1) vdots 6 (đpcm)`
\(n\left(n+1\right)\left(2n+1\right)\)
\(=n\left(n+1\right)\left(n+2+n-1\right)\)
\(=n\left(n+1\right)\left(n+2\right)+\left(n-1\right)\cdot n\cdot\left(n+1\right)\)
Vì n;n+1;n+2 là ba số nguyên liên tiếp
nên \(n\left(n+1\right)\left(n+2\right)⋮3!=6\)
Vì n-1;n;n+1 là ba số nguyên liên tiếp
nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮3!=6\)
Do đó: \(n\left(n+1\right)\left(n+2\right)+\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮6\)
=>\(n\left(n+1\right)\left(2n+1\right)⋮6\)
Gọi số học sinh của trường là x(bạn)
(Điều kiện: \(x\in Z^+\))
Số học sinh chia 13 dư 4 nên \(x-4\in B\left(13\right)\)
Số học sinh chia 17 dư 9 nên \(x-9\in B\left(17\right)\)
Số học sinh chia 5 thì vừa đủ nên \(x\in B\left(5\right)\)
mà 2500<=x<=3000
nên ta có: \(\left\{{}\begin{matrix}x-4\in B\left(13\right)\\x-9\in B\left(17\right)\\x\in B\left(5\right)\\2500< =x< =3000\end{matrix}\right.\)
=>x=2695(nhận)
Vậy: Trường đó là 2695 bạn
30% của 1số là `729 `. Số đó là: `729 : 30% = 2430`
18% của 1 số là `2,7 `. Số đó là: `2,7 : 18% = 15`
5/9 của 1 số là `45 `. Số đó là: `45 : 5/9 = 81`