Cho tam giác ABC. Gọi I là trung điểm của cạnh BC. Đường phân giác của góc AIB cắt
cạnh AB ở M. Đường phân giác của góc AIC cắt cạnh AC ở N.
a) Chứng minh rằng MM // BC.
b) Tam giác ABC phải thoả điều kiện gì để có MN = AI?
c) Tam giác ABC phải thoả điều kiện gì để có MN vuông góc với AI?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2(x+y)+16-xy=0
<=> 2x+2y+16-xy=0
<=> y(2-x)-2(2-x)+20=0
<=> (2-x)(y-2)=-20
Vì x,y thuộc Z
=> 2-x;y-2 thuộc Z
=> 2-x;y-2 \(\inƯ\left(-20\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm10;\pm20\right\}\)
Xét bảng
2-x | 1 | -1 | 2 | -2 | 4 | -4 | 5 | -5 | 10 | -10 | 20 | -20 |
y-2 | -20 | 20 | -10 | 10 | -5 | 5 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 1 | 3 | 0 | 4 | -2 | 6 | -3 | 7 | -8 | 12 | -18 | 22 |
y | -18 | 22 | -8 | 12 | -3 | 7 | -2 | 6 | 0 | 4 | 1 | 3 |
Vậy.........
Trả lời:
a, ( 3x - 1)2 - ( 2 - 3x)2 = 5x + 2
=> 9x2 - 6x + 1 - ( 4 - 12x + 9x2 ) = 5x + 2
=> 9x2 - 6x + 1 - 4 + 12x - 9x2 = 5x + 2
=> 6x - 3 = 5x + 2
=> 6x - 5x = 2 + 3
=> x = 5
Vậy S = { 5 }
b, x2 - 4x + 3 - ( x + 1 )2 = 4( x - 2 )
=> x2 - 4x + 3 - ( x2 + 2x + 1 ) = 4x - 8
=> x2 - 4x + 3 - x2 - 2x - 1 = 4x - 8
=> -6x + 2 = 4x - 8
=> -6x - 4x = -8 - 2
=> -10x = -10
=> x = 1
Vậy S = { 1 }
c, ( 4 - 2x ) + ( 5x - 3 ) = ( x - 2 ) - ( x + 3 )
=> 4 - 2x + 5x - 3 = x - 2 - x - 3
=> 3x + 1 = -5
=> 3x = -6
=> x = -2
Vậy S = { -2 }
d, 5 - 3x - ( 4 - 2x ) = x - 7 - ( x - 2 )
=> 5 - 3x - 4 + 2x = x - 7 - x + 2
=> 1 - x = -5
=> x = 6
Vậy S = { 6 }
e, x2 - 4x + 4 = 25
=> ( x - 2 )2 = 25
=> x - 2 = 5 hoặc x - 2 = -5
=> x = 7 x = -3
Vậy S = { 7; -3 }
Bài 5:
a, ( x2 + x )2 + 4( x2 + x ) = 12
Đặt x2 + x = t
=> t2 + 4t = 12 (1)
=> t2 + 4t - 12 = 0
=> t2 - 2t + 6t - 12 = 0
=> ( t2 - 2t ) + ( 6t - 12 ) = 0
=> t ( t - 2 ) + 6 ( t - 2 ) = 0
=> ( t + 6 ) ( t - 2 ) = 0
=> t + 6 = 0 hoặc t - 2= 0
=> t = -6 hoặc t = 2
Khi t = -6 thì x2 + x = -6
=> x2 + x + 6 = 0
=> [x2 + 2.x. \(\frac{1}{2}\)+ \(\left(\frac{1}{2}\right)^2\)] + \(\frac{23}{4}\)= 0
=> \(\left(x+\frac{1}{2}\right)^2\)\(+\frac{23}{4}=0\)
=> \(\left(x+\frac{1}{2}\right)^2=-\frac{23}{4}\)( vô lí)
=> không tìm được x thỏa mãn
Khi t = 2 thì x2 + x = 2
=> x2 + x - 2 = 0
=> x2 + 2x - x - 2 = 0
=> ( x2 + 2x ) - ( x + 2 ) = 0
=> x( x + 2 ) - ( x + 2 ) = 0
=> ( x - 1 ) ( x + 2 ) = 0
=> x - 1 = 0 hoặc x + 2 = 0
=> x = 1 x = -2
Vậy S = { 1; -2 }
a) (3x - 1)2 - (2 - 3x)2 = 5x + 2
<=> 9x2 - 6x + 1 - (4 - 12x + 9x2) = 5x + 2
<=> 6x - 3 = 5x + 2
<=> x = 5
Vậy x = 5 là nghiệm phương trình
b) x2 - 4x + 3 - (x + 1)2 = 4(x - 2)
<=> x2 - 4x + 3 - (x2 + 2x + 1) = 4x - 8
<=> -6x + 2 = 4x - 8
<=> -10x = -10
<=> x = 1
Vậy x = 1 là nghiệm phương trình
c) (4 - 2x) + (5x - 3) = (x - 2) - (x + 3)
<=> 3x - 1 = 5
<=> 3x = 6
<=> x = 2
Vậy x = 2 là nghiệm phương trình
pt <=> \(\left(\frac{392-x}{32}+1\right)+\left(\frac{390-x}{34}+1\right)+\left(\frac{388-x}{36}+1\right)+\left(\frac{386-x}{38}+1\right)+\left(\frac{384-x}{40}+1\right)=0\)
<=> \(\frac{392-x+32}{32}+\frac{390-x+34}{34}+\frac{388-x+36}{36}+\frac{386-x+38}{38}+\frac{384-x+40}{40}=0\)
<=> \(\frac{424-x}{32}+\frac{424-x}{34}+\frac{424-x}{36}+\frac{424-x}{38}+\frac{424-x}{40}=0\)
<=> \(\left(424-x\right)\left(\frac{1}{32}+\frac{1}{34}+\frac{1}{36}+\frac{1}{38}+\frac{1}{40}\right)=0\)
Vì \(\frac{1}{32}+\frac{1}{34}+\frac{1}{36}+\frac{1}{38}+\frac{1}{40}>0\)( quá rõ ràng rồi =)) )
=> 424 - x = 0 <=> x = 424
Vậy S = { 424 }
Trả lời:
\(\frac{392-x}{32}+\frac{390-x}{34}+\frac{388-x}{36}+\frac{386-x}{38}=-5\)
\(\Leftrightarrow\left(\frac{392-x}{32}+1\right)+\left(\frac{390-x}{34}+1\right)+\left(\frac{388-x}{36}+1\right)+\left(\frac{386-x}{38}+1\right)=0\)
\(\Leftrightarrow\frac{424-x}{32}+\frac{424-x}{34}+\frac{424-x}{36}+\frac{424-x}{38}+\frac{424-x}{40}=0\)
\(\Leftrightarrow\left(424-x\right)\left(\frac{1}{32}+\frac{1}{34}+\frac{1}{36}+\frac{1}{38}+\frac{1}{40}\right)=0\)
\(\Leftrightarrow424-x=0\) ( vì \(\frac{1}{32}+\frac{1}{34}+\frac{1}{36}+\frac{1}{38}+\frac{1}{40}\ne0\))
\(\Leftrightarrow x=424\)
Vậy \(S=\left\{424\right\}\)
Giải phương trình nghiệm nguyên đúng ko bn
Ta có: \(x^2-6x+54=y^2\)
\(\Leftrightarrow x^2-6x+9+45=y^2\)
\(\Leftrightarrow\left(x-3\right)^2-y^2=-45\)
\(\Leftrightarrow\left(x+y-3\right).\left(x-y-3\right)=-45=\left(-1\right).45=1.\left(-45\right)\)
\(=3.\left(-15\right)=\left(-3\right).15\)
\(=9.\left(-5\right)=\left(-9\right).5\)
Đến đây bn tự tính ra kết quả nhé
tự kẻ hình ná
a) tam giác ABM có: AM/BM=AI/BI ( theo tính chất đường pg trong tam giác)
tương tự, ta có AN/NC=AI/CI
mà CI=BI=> AM/MB=AN/NC=> MN//BC ( định lý talet đảo)
b) ta có IM là pg của AIB => BIM=MIA
IN là pg của AIC => CIN=NIA
=> BIC=BIM+MIA+AIN+CIN=180 độ=> MIA+NIA=90 độ=> IM vuông góc với IN
để AI=MN=> ANIM là hình thang cân=> AN//IM mà IM vuông góc IN
=> ANI=90 độ mà ANI=NAM ( ANIM thang cân)=> BAC=90 độ
=> tam giác ABC vuông tại A thì AI=MN
c) Để MN vuông góc với AI=> ANIM là hình thoi mà MAN=90 độ=> ANIM là hình vuông
=> MIA=NIA= 45 độ ( AI thành đpg của MIN)
=> BIM+MIA=2*45 độ=90 độ=> AI vuông góc với BC tại trung điểm I=> AI là trung trực=> tam giác ABC cânA
=> tam giác ABC vuông cân tại A thì AI vuông góc MN