K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2021

Gọi x là quãng đường 2 xe đã đi đến khi gặp nhau (x dương) 

Khi đó tàu chở hàng đã đi được x36 giờ, tàu chở khách đã đi được x48 giờ 

Tàu chở khách đi sau tàu chơr hàng 2h nên ta có pt: 

x36 - x48 = 2 

<=> x= 288  

Vậy thời gian tàu khách đã đi là 28848= 6h

20 tháng 4 2021

Bạn thiếu và đa km/h

DD
9 tháng 3 2021

Ta có bất đẳng thức: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) với \(x,y>0\).

Dấu \(=\)xảy ra khi \(x=y\).

Ta có: \(\frac{1}{2x+y+z}=\frac{1}{x+y+x+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\)

\(\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}+\frac{1}{z}\right)=\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\).

Tương tự với hai số hạng còn lại. 

Suy ra \(P\le\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)+\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)+\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\)

\(=\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{2020}{4}=505\).

Dấu \(=\)xảy ra khi \(x=y=z=\frac{3}{2020}\).

9 tháng 3 2021

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=4\)

\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}=\frac{2}{xy}-\frac{1}{z^2}\)

\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}-\frac{2}{xy}+\frac{1}{z^2}=0\)

\(\Leftrightarrow\left(\frac{1}{x^2}+\frac{2}{xz}+\frac{1}{z^2}\right)+\left(\frac{1}{y^2}+\frac{2}{yz}+\frac{1}{z^2}\right)=0\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2+\left(\frac{1}{y}+\frac{1}{z}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}+\frac{1}{z}=0\\\frac{1}{y}+\frac{1}{z}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{1}{x}=\frac{1}{-z}\\\frac{1}{y}=\frac{1}{-z}\end{cases}\Leftrightarrow}\frac{1}{x}=\frac{1}{y}=\frac{1}{-z}\)

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)

\(\Leftrightarrow\frac{1}{-z}+\frac{1}{-z}+\frac{1}{z}=2\)

\(\Leftrightarrow z=\frac{-1}{2}\)

\(x=y=\frac{1}{2}\)

\(\Rightarrow C=\left(x+2y+z\right)^{2021}=\left(\frac{1}{2}+2.\frac{1}{2}-\frac{1}{2}\right)^{2021}=1^{2021}=1\)

9 tháng 3 2021

Ta có:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=4\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{2}{xy}-\frac{1}{z^2}\)

\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}-\frac{2}{xy}+\frac{1}{z^2}=0\)

\(\Leftrightarrow\left(\frac{1}{x^2}+\frac{2}{xz}+\frac{1}{z^2}\right)+\left(\frac{1}{y^2}+\frac{2}{yz}+\frac{1}{z^2}\right)=0\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2+\left(\frac{1}{y}+\frac{1}{z}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(\frac{1}{x}+\frac{1}{z}\right)^2=0\\\left(\frac{1}{y}+\frac{1}{z}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=-\frac{1}{z}\\\frac{1}{y}=-\frac{1}{z}\end{cases}}}\)

\(\Leftrightarrow x=y=-z\)

Thay vào \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)ta được :

\(x=y=\frac{1}{2};z=-\frac{1}{2}\)

\(\Rightarrow P=\left(\frac{1}{2}+2.\frac{1}{2}-\frac{1}{2}\right)^{2021}=1^{2020}=1\)

9 tháng 3 2021

Pt <=> y^3 =3x + x^3

Vì 3x^2 + 1 > 0 mọi x nên ta có:

(X^3 +3x ) - (3x^2 + 1) < x^3 + 3x < x^3 + 3x + (3x^2 + 1)

<=> (x-1)^3 < y^3 < (x + 1)^3

=> y^3 =x^3

Pt <=>x^3 =x^3 + 3x

<=> x = 0

=> y= 0 Vậy ngiệm của pt là (0,0)

9 tháng 3 2021

\(y^3-x^3=3x\)

\(\Leftrightarrow x^3+3x=y^3\)

Vì \(3x^2+1>0\forall x\)ta có:

\(\left(x^3+3x\right)-\left(3x^2+1\right)< x^3+3x+\left(3x^2+1\right)\)

\(\Leftrightarrow\left(x-1\right)^3< y^3< \left(x+1\right)^3\)

\(\Rightarrow x^3=y^3\)

Ta có:\(y^3-x^3=3x\)

\(\Leftrightarrow x^3+3x=x^3\)

\(\Rightarrow x=0\)

\(\Rightarrow x=y=0\)

Cre:mạng

9 tháng 3 2021

a) pt <=> ( x - 1 )3 + x2( x - 1 ) = 0

<=> ( x - 1 )[ ( x - 1 )2 + x2 ] = 0

<=> x = 1

Vậy pt có nghiệm x = 1

b) x2 + x - 12 = 0

<=> x2 - 3x + 4x - 12 = 0

<=> x( x - 3 ) + 4( x - 3 ) = 0

<=> ( x - 3 )( x + 4 ) = 0

<=> x = 3 hoặc x = -4

Vậy S = { 3 ; -4 }

c) x + x4 = 0

<=> x( x3 + 1 ) = 0

<=> x( x + 1 )( x2 - x + 1 ) = 0

<=> x = 0 hoặc x = -1

Vậy S = { 0 ; -1 }

9 tháng 3 2021

a,\(x^3-3x^2+3x-1+x\left(x^2-x\right)=0\)

\(\Leftrightarrow\left(x^3-3x^2+3x-1\right)+x\left(x^2-x\right)=0\)

\(\Leftrightarrow\left(x-1\right)^3+x^2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(x-1\right)^2+x^2\right]=0\)

\(\Leftrightarrow x=1\)