Cho tam giác ABC gọi M, N là các điểm thuộc cạnh
AC, BC sao cho MA = MC, NC = 2NB. Đường thẳng
qua M song song với AN cắt BC tại P.
a) Chứng minh BN = NP = P C.
b) Chứng minh AN đi qua của trung điểm của BM.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=x\left(\frac{3}{7}x+6+xy\right)\)
\(b,=\left(x+3y\right)\left(3x-6xy\right)=\left(x+3y\right).3x\left(1-2y\right)\)
\(c,=x\left(x+y\right).\left(-5\right)\left(x+y\right)=\left(x+y\right)\left[x.\left(-5\right)\right]\)
\(d,=3\left(x-y\right)+5x\left(x-y\right)=\left(x-y\right)\left(3+5x\right)\)
\(B3.a,x\left(1+6x\right)=0\)
\(Th1:x=0\)
\(Th2:1+6x=0=>x=-\frac{1}{6}\)
Vậy \(x\in\left\{0;-\frac{1}{6}\right\}\)
\(b,\left(x+3\right)\left(2-x\right)=0\)
\(Th1:x+3=0=>x=-3\)
\(Th2:2-x=0=>x=2\)
Vậy \(x\in\left\{-3;2\right\}\)
\(c,5x\left(x-2\right)+\left(x-2\right)=0\)
\(\left(x-2\right)\left(5x+1\right)=0\)
\(Th1:x-2=0=>x=2\)
\(5x +1=0=>x=-\frac{1}{5}\)
Vậy \(x\in\left\{-\frac{1}{5};2\right\}\)
Ta có: a^3+b^3 = (a+b)(a^2-ab+b^2)
= a^3-a^2b+ab^2+a^2b-ab^2+b^3
= a^3-3a^2b+2a^2b+3ab^2-2ab^2+3a^2b-2a^2b-3ab^2+2ab^2+b^3
= (a^3+3a^2b+3ab^2+b^3)-(3a^2b+3ab^2)+(2a^2b-2a^2b)+(2ab^2-2ab^2)
= (a+b)^3-3ab(a+b) (đpcm)
a3 + b3 = ( a + b ) 3 - 3ab( a + b )
a3 + b3 =a^3+3a^2b+3ab^2-3a^b-3ab^2
a3 + b3 =a^2+b^2(đpcm)
Ta có \(\frac{n^5}{30}+\frac{n^3}{6}+\frac{4n}{5}=\frac{n^5+5n^3+24n}{30}\)
Khi đó n5 + 5n3 + 24n
= n(n4 + 5n2 + 24)
= n(n4 + 5n2 - 6 + 30)
= n(n4 - n2 + 6n2 - 6) + 30n
= n[n2(n2 - 1) + 6(n2 - 1)] + 30n
= n(n2 + 6)(n2 - 1) + 30n
= n(n2 - 4 + 10)(n2 - 1) + 30n
= n(n2 - 4)(n2 - 1) + 10n(n2 - 1) + 30n
= (n - 2)(n - 1)n(n + 1)(n + 2) + 10(n - 1)n(n + 1) + 30n
Nhận thây (n - 2)(n - 1)n(n + 1)(n + 2) \(⋮\)30 (tích 5 số nguyên liên tiếp) (1)
10(n - 1)n(n + 1) \(⋮\)30 (2)
30n \(⋮\)30 (3)
Từ (1) ; (2) ; (3) => (n - 2)(n - 1)n(n + 1)(n + 2) + 10(n - 1)n(n + 1) + 30n \(⋮\)30
=> n5 + 5n3 + 24n \(⋮\)30
=> P \(\inℤ\)(ĐPCM)
\(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Đặt \(\frac{1}{a}=x,\frac{1}{b}=y,\frac{1}{c}=z\)
\(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\)
mà \(a,b,c\)dương nên \(x=y=z\Rightarrow a=b=c\).
\(A=\left(2+\frac{a}{b}\right)\left(2+\frac{b}{c}\right)\left(2+\frac{c}{a}\right)=3^3=27\).
\(3a^2\)\(b^2\)\(c^2\)
\(=>ab+bc+ca=0\)
\(=>ab^2\)\(+bc^2\)\(+ca^2\)\(=0\)
\(TH1:ab+bc+ca=0\)
\(ab+bc=-ca\)
\(=>a+c=-\frac{ac}{b}\)
\(=>a+b=-\frac{ab}{c}\)
\(b+c=-\frac{bc}{a}\)
\(Thay\)\(A\)
\(=>A=-3\)
\(\left(ab-bc\right)^2\)\(+\left(bc-ca\right)^2\)\(+\left(ca-ab\right)^2\)\(=0\)
\(=>ab-bc=0\)
\(bc-ca=0\)
\(ca-ab=0\)
\(=>ab=bc=ca\)
\(=>a=b=c\)
\(Thay\)\(A\)
\(=>A=-24\)
\(=>A=\left(-3;-24\right)\)
Em làm sai mong anh thông cảm cho ạ
a) Xét ∆AND và ∆CMB có:
BM=DN (giả thiết)
AD=BC(các cạnh đối bằng nhau)
góc ADN=góc CBM( so le trong)
Vậy ∆AND=∆CMB( cạnh góc cạnh)
=> AN=CM( 2 cạnh tương ứng)( điều phải chứng minh)
b)AN//CM( góc ANM= góc CMN so le trong)và AN=CM( chứng minh trên)
=> Tứ giác AMCN là hình bình hành(điều phải chứng minh)
c)AN//CM mà N thuộc AI và M thuộc CK
->AI//CK
AB//DC mà K thuộc AB và I thuộc DC
->AK//DI
Vậy tứ giác AKCI là hình bình hành( các cạnh đối song song)
=> AC và KI là đường chéo của hình bình hành AKCI
=> AO= OC; KO=OI ( hai đường chéo cắt nhau tại trung điểm mỗi đường)
Vậy K,O,I cùng nằm trên cùng 1 đường thẳng( điều phải chứng minh)
hok tốt