11x +42-2x=100-9x-22
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔADH vuông tại D và ΔAHB vuông tại H có
\(\widehat{DAH}\) chung
Do đó: ΔADH~ΔAHB
2: Xét ΔEHA vuông tại E và ΔECH vuông tại E có
\(\widehat{EHA}=\widehat{ECH}\left(=90^0-\widehat{EHC}\right)\)
Do đó: ΔEHA~ΔECH
=>\(\dfrac{EH}{EC}=\dfrac{EA}{EH}\)
=>\(EH^2=EA\cdot EC\)
3: Xét ΔAEH vuông tại E và ΔAHC vuông tại H có
\(\widehat{EAH}\) chung
Do đó: ΔAEH~ΔAHC
=>\(\dfrac{AE}{AH}=\dfrac{AH}{AC}\)
=>\(AE\cdot AC=AH^2\left(1\right)\)
Ta có: ΔADH~ΔAHB
=>\(\dfrac{AD}{AH}=\dfrac{AH}{AB}\)
=>\(AH^2=AD\cdot AB\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AC=AD\cdot AB\)
=>\(\dfrac{AE}{AD}=\dfrac{AB}{AC}\)
Xét ΔAEB và ΔADC có
\(\dfrac{AE}{AD}=\dfrac{AB}{AC}\)
\(\widehat{EAB}\) chung
Do đó: ΔAEB~ΔADC
=>\(\widehat{ABE}=\widehat{ACD}\)
Xét ΔMBD và ΔMCE có
\(\widehat{MBD}=\widehat{MCE}\)
\(\widehat{DMB}=\widehat{EMC}\)(hai góc đối đỉnh)
Do đó: ΔMBD~ΔMCE
a) Tam giác MNP có các đường cao MK, NI cắt nhau tại H nên H là trực tâm tam giác MNP => PH vuông góc MN hay PA vuông góc MN tại A.
b) Xét 2 tam giác MIN và MAP, ta có:
\(\widehat{MIN}=\widehat{MAP}=90^o\); \(\widehat{NMP}\) chung
\(\Rightarrow\Delta MIN\sim\Delta MAP\left(g.g\right)\)
c) Tương tự câu b), ta chứng minh được \(\Delta PIN\sim\Delta PKM\)
\(\Rightarrow\dfrac{PI}{PK}=\dfrac{PN}{PM}\Rightarrow\dfrac{PI}{PN}=\dfrac{PK}{PM}\)
Xét tam giác PIK và PNM, ta có:
\(\dfrac{PI}{PN}=\dfrac{PK}{PM};\widehat{MPN}\) chung
\(\Rightarrow\Delta PIK\sim\Delta PNM\left(c.g.c\right)\)
\(\Rightarrow\widehat{PKI}=\widehat{PMN}\)
d) Xét tam giác MIH và MKP, ta có:
\(\widehat{MIH}=\widehat{MKP}=90^o\); \(\widehat{KMP}\) chung
\(\Rightarrow\Delta MIH\sim\Delta MKP\left(g.g\right)\)
\(\Rightarrow\dfrac{MI}{MK}=\dfrac{MH}{MP}\)
\(\Rightarrow MK.MH=MI.MP\)
e) Từ c), suy ra \(PK.PN=PI.PM\)
Do đó \(MH.MK+PK.PN\)
\(=MI.MP+PI.PM\)
\(=MP\left(MI+PI\right)\)
\(=MP^2\), ta có đpcm.
f) Từ câu d), ta có \(\widehat{PIK}=\widehat{PNM}\)
Tương tự câu d), ta cũng chứng minh được \(\Delta MIA\sim\Delta MNP\)
\(\Rightarrow\widehat{MIA}=\widehat{MNP}\)
\(\Rightarrow90^o-\widehat{MIA}=90^o-\widehat{MNP}\)
\(\Rightarrow\widehat{AIN}=\widehat{KIN}\)
\(\Rightarrow\) IN là tia phân giác \(\widehat{AIK}\)
g) Xét tam giác MBK và MKN, ta có:
\(\widehat{MBK}=\widehat{MKN}=90^o\); \(\widehat{NMK}\) chung
\(\Rightarrow\Delta MBK\sim\Delta MKN\left(g.g\right)\)
\(\Rightarrow\dfrac{MB}{MK}=\dfrac{MK}{MN}\)
\(\Rightarrow MK^2=MB.MN\)
Tương tự, ta cũng có \(MK^2=MC.MP\)
\(\Rightarrow MB.MN=MC.MP\left(=MK^2\right)\)
\(\Rightarrow\dfrac{MN}{MC}=\dfrac{MP}{MB}\)
Xét tam giác MNP và MCB, ta có:
\(\dfrac{MN}{MC}=\dfrac{MP}{MB};\) \(\widehat{NMP}\) chung
\(\Rightarrow\Delta MNP\sim\Delta MCB\left(c.g.c\right)\)
\(\Rightarrow\widehat{MNP}=\widehat{MCB}\)
Theo cmt, ta có \(\widehat{MIA}=\widehat{MNP}\)
\(\Rightarrow\widehat{MIA}=\widehat{MCB}\)
\(\Rightarrow\) IA//BC (2 góc đồng vị bằng nhau)
a: Xét ΔMNP có
NI,MK là các đường cao
NI cắt MK tại H
Do đó: H là trực tâm của ΔMNP
=>PH\(\perp\)MN tại A
b: Xét ΔMIN vuông tại I và ΔMAP vuông tại A có
\(\widehat{IMN}\) chung
Do đó: ΔMIN~ΔMAP
c: Xét ΔPKM vuông tại K và ΔPIN vuông tại I có
\(\widehat{KPM}\) chung
Do đó: ΔPKM~ΔPIN
=>\(\dfrac{PK}{PI}=\dfrac{PM}{PN}\)
=>\(\dfrac{PI}{PN}=\dfrac{PK}{PM}\)
Xét ΔPIK và ΔPNM có
\(\dfrac{PI}{PN}=\dfrac{PK}{PM}\)
\(\widehat{IPK}\) chung
Do đó: ΔPIK~ΔPNM
=>\(\widehat{PKI}=\widehat{PMN}\)
d: Xét ΔMIH vuông tại H và ΔMKP vuông tại K có
\(\widehat{IMH}\) chung
Do đó: ΔMIH~ΔMKP
=>\(\dfrac{MI}{MK}=\dfrac{MH}{MP}\)
=>\(MI\cdot MP=MK\cdot MH\)
e: \(\dfrac{PI}{PN}=\dfrac{PK}{PM}\)
=>\(PI\cdot PM=PN\cdot PK\)
\(MH\cdot MK+PK\cdot PN\)
\(=MI\cdot MP+IP\cdot MP\)
=MP(MI+IP)
=MP^2
a
ta có: MN\(\perp\)AC
AB\(\perp\)AC
Do đó: MN//AB
ta có: MP\(\perp\)AB
AC\(\perp\)AB
Do đó: MP//AC
Xét ΔBMP vuông tại P và ΔMCN vuông tại N có
\(\widehat{MBP}=\widehat{CMN}\)(hai góc đồng vị, MN//AB)
Do đó: ΔBMP~ΔMCN
b: Xét ΔBAC có MP//AC
nên \(\dfrac{MP}{AC}=\dfrac{BM}{BC}\)
=>\(\dfrac{MP}{12}=\dfrac{6}{15}=\dfrac{2}{5}\)
=>\(MP=12\cdot\dfrac{2}{5}=4,8\left(cm\right)\)
Xét ΔCAB có MN//AB
nên \(\dfrac{MN}{AB}=\dfrac{CM}{CB}\)
=>\(\dfrac{MN}{9}=\dfrac{9}{15}=\dfrac{3}{5}\)
=>MN=9*3/5=5,4(cm)
Xét tứ giác APMN có \(\widehat{APM}=\widehat{ANM}=\widehat{PAN}=90^0\)
nên APMN là hình chữ nhật
=>\(AM^2=MN^2+MP^2=5,4^2+4,8^2=52,2\)
=>\(AM=\sqrt{52,2}\left(cm\right)\)
a) \(4x^2-1=\left(2x+1\right)\left(3x-5\right)\)
\(\Leftrightarrow\left(2x\right)^2-1^2=\left(2x+1\right)\left(3x-5\right)\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-1\right)-\left(2x+1\right)\left(3x-5\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-1-3x+5\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(4-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=-1\\4=x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=4\end{matrix}\right.\)
Vậy: ...
b) \(\dfrac{x-85}{15}+\dfrac{x-74}{13}+\dfrac{x-67}{11}+\dfrac{x-64}{9}=10\)
\(\Leftrightarrow\dfrac{x-85}{15}+\dfrac{x-74}{13}+\dfrac{x-67}{11}+\dfrac{x-64}{9}-10=0\)
\(\Leftrightarrow\left(\dfrac{x-85}{15}-1\right)+\left(\dfrac{x-74}{13}-2\right)+\left(\dfrac{x-67}{11}-3\right)+\left(\dfrac{x-64}{9}-4\right)=0\)
\(\Leftrightarrow\dfrac{x-100}{15}+\dfrac{x-100}{13}+\dfrac{x-100}{11}+\dfrac{x-100}{9}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{15}+\dfrac{1}{13}+\dfrac{1}{11}+\dfrac{1}{9}\right)=0\)
\(\Leftrightarrow x-100=0\)
\(\Leftrightarrow x=100\)
Vậy: ...
a) Bảng giá trị
Đồ thị:
b) Phương trình hoành độ giao điểm của (d₁) và (d₂):
-x + 5 = x + 2
-x - x = 2 - 5
-2x = -3
x = 3/2
Thay x = 3/2 vào (d₂), ta có:
y = 3/2 + 2 = 7/2
Vậy tọa độ giao điểm M(3/2; 7/2)
c) Gọi (d₃): y = ax + b (a ≠ 0) là đồ thị của hàm số cần tìm
Do (d₃) // (d₁) nên a = -1
⇒ (d₃): y = -x + b
Do (d₃) đi qua K(-4; 2) nên thay tọa độ của K(-4; 2) vào (d₃), ta có:
-(-4) + b = 2
b = 2 - 4
b = -2
Vậy hàm số cần tìm là:
y = -x - 2
a) Đồ thị hs:`y=-2x+5` cắt `Ox(5/2;0)` và cắt `Oy(0;5)`
Đồ thị hs: `y=x+2` cắt `Ox(-2;0)` và cắt `Oy(0;2)`
b) Ta có pt hoành độ giao điểm của (d1) và (d2):
\(-2x+5=x+2\)
\(\Leftrightarrow x+2x=5-2\)
\(\Leftrightarrow3x=3\)
\(\Leftrightarrow x=1\)
Thay `x=1` vào `(d_2)` ta có: \(y=1+2=3\)
`=>M(1;3)`
c) Hàm số `y=ax+b` có đồ thị song song với `(d_1):y=-2x+5`
`=>a=-2`
`=>y=-2x+b`
Mà hàm số này đi qua điểm `K(-4;2)` ta thay `x=-4` và `y=2` vào ta có:
`2=-2*(-4)+b`
`<=>2=8+b`
`<=>b=2-8=-6`
Vậy hàm số đó là: `y=-2x-6`
ĐKXĐ: x ≠ 1; x ≠ -1
4/(x - 1) - A = 8/(x² - 1)
⇒ A = 4/(x - 1) - 8/(x² - 1)
= 4(x + 1)/(x² - 1) - 8/(x² - 1)
= (4x + 4 - 8)/(x² - 1)
= (4x - 4)/(x² - 1)
= 4(x - 1)/[(x - 1)(x + 1)]
= 4/(x + 1)
a: Xét ΔAFB và ΔCFI có
\(\widehat{FAB}=\widehat{FCI}\)(hai góc so le trong, AB//CI)
\(\widehat{AFB}=\widehat{CFI}\)(hai góc đối đỉnh)
Do đó: ΔAFB~ΔCFI
b: Xét ΔEAB và ΔEKD có
\(\widehat{EAB}=\widehat{EKD}\)(hai góc so le trong, AB//KD)
\(\widehat{AEB}=\widehat{KED}\)(hai góc đối đỉnh)
Do đó: ΔEAB~ΔEKD
=>\(\dfrac{AB}{KD}=\dfrac{AE}{KE}\)
=>\(AB\cdot KE=AE\cdot KD\)
\(11x+42-2x=100-9x-22\\ 11x-2x+9x=100-22-42\\ 18x=36\\ x=\dfrac{36}{18}=2\)
x=2