Tính:
B= \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bai 1:
Ap dung dinh li Py-ta-go vao tam giac AHB ta co:
AH^2+BH^2=AB^2
=>12^2+BH^2=13^2
=>HB=13^2-12^2=25
Tuong tu voi tam giac AHC
=>AC=20
=>BC=25+16=41
Từ giả thiết suy ra (ay+bx)/xy = (bz+cy)/yz =(cx+az)/xz hay a/x =b/y =c/z.
dặt x/a =y=b =z/c =k suy ra x =ak; y=bk; z=ck. thay vào biểu thức bài cho tìm được k=1/2
vậy x =a/2; y=b/2; z=c/2
\(\frac{xy}{ay+bx}\)=\(\frac{yz}{bz+cy}\)=\(\frac{zx}{cx+az}\left(1\right)\)
\(\Rightarrow\)\(\frac{xyz}{ayz+bxz}\)=\(\frac{xyz}{bzx+cyx}\)=\(\frac{zyx}{cxy+azy}\)
\(\Rightarrow\)\(ayz+bxz=bzx+cyx=cxy+azy\)
\(\Rightarrow\)\(\hept{\begin{cases}ayz+bxz=bxz+cyx\\bzx+cyx=cxy+azy\\ayz+bxz=cxy+azy\end{cases}}\Rightarrow\hept{\begin{cases}ayz=cyx\\bzx=azy\\bxz=cxy\end{cases}}\)\(\Rightarrow\hept{\begin{cases}az=cx\\bx=ay\\bz=cy\end{cases}\left(2\right)}\)
thay (2) vào (1)
\(\Rightarrow\)\(\frac{xy}{2ay}\)=\(\frac{yz}{2bz}\)=\(\frac{zx}{2cx}\)
\(\Rightarrow\)\(\frac{x}{2a}=\frac{y}{2b}=\frac{z}{2c}\)\(=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(3\right)\)
\(\Rightarrow\left(\frac{x}{2a}\right)^2=\left(\frac{y}{2b}\right)^2=\left(\frac{z}{2c}\right)^2\)
\(\Rightarrow\text{}\text{}\)\(\frac{x^2}{4a^2}=\frac{y^2}{4b^2}=\frac{z^2}{4c^2}\)
theo quy luật của dãy số bằng nhau, nên
\(\frac{x^2}{4a^2}=\frac{y^2}{4b^2}=\frac{z^2}{4c^2}=\)\(\frac{x^2+y^2+z^2}{4a^2+4b^2+4c^2}=\frac{\left(x^2+y^2+z^2\right)}{4\left(a^2+b^2+c^2\right)}=\frac{1}{4}\left(4\right)\)
từ (3) và (4)
\(\Rightarrow\)\(\frac{x}{2a}=\frac{y}{2b}=\frac{z}{2c}=\frac{1}{4}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{a}{2}\\y=\frac{b}{2}\\c=\frac{c}{2}\end{cases}}\)
a) Theo gt ta có : AB = AC
=> tam giác ABC cân tại A
=> góc B = góc C *
Xét tam giác ABD và tam giác ACE có :
+ AB = AC(gt)
+ góc B = góc C ( theo * )
+ BD = CE (gt)
=> tam giác ABD = tam giác ACE ( c . g .c )
=> AD = AE ( 2 cạnh tương ứng )
b) Ta có : DM vuông góc với BC, EN vuông góc với BC
=> tam giác MBD và tam giác NCE là tam giác vuông
Xét : tam giác vuông MBD ( góc D = 90\(^o\)) và tam giác vuông NCE ( góc E = 90\(^o\)) có :
+ BD = CE (gt)
+ góc B = góc C ( theo * )
=> tam giác vuông MBD = tam giác vuông NCE ( cạnh góc vuông + góc nhọn )
c) theo CM ý b) ta có : tam giác MBD = tam giác NCE
=> BM = CN (2 cạnh tương ứng )
Mà :MA + BM = AB, AN + CN = AC
Lại có : AB = AC (gt)
=> AM = AN
=> tam giác AMN cân tại A
Nếu : ABC là tam giác đều
=> góc A = 60\(^o\)
=> tam giác AMN là tam giác đều ( tam giác đều là tam giác cân có 1 góc bằng 60\(^o\))
on troi toi da lam ra roi;
ke DF la trung tuyen cua canh BE ta co DF =FE =FD (tc trung tuyen tg vuong)
Tam giác DFB cân (vì FB=FD) => góc DBF = góc FDB mà góc DBF = góc DBA (gt)
=> góc ABD = góc BDF (hai góc này ở vị trí so le nên DF // AB)
Xét tam giác DFC có góc ABC = góc DFC ( đồng vị) mà góc B = góc C (gt) => góc DFC = góc DCF
nên tam giác DFC cân => DF=DC mà DF = 1/2 BE (tam giác vuông BDE) => DC=1/2 BE hay BE=2DC
là 2014! chia hết cho 7a chứ đâu pải 2014 chia hết cho 7a, bạn bị nhấm rồi Trần Cao Anh Triết
Hình như bài này có vấn đề á bạn
Ta có: 2004 chia hết cho 7a=> 7a thuộc ước của 2004
Mà: ước của 2004 = {1;2;3;167;12;668;1002; 2004;6;334;501;4} (ko kể ước âm vì a thuộc n*)
Thử tất cả các ước trên => Ko tồn tại số a nào thỏa mãn cả^^
=>x.(x+4)+13 chia hết cho x+4
=> 13 chia hết cho x+4
Giải ra ta đc x E {-17;-5;-3;7}
Vật có 4 phần tử
4 phần tử , tớ giải violympic được 300 điểm đó !!!!!!!
B=1+1+1/2+1+2/2+1+3/2+.....+1+(1+2+...+19)/20
B=20+1/2+2/2+3/2+...+19/2
B=20+(1+2+3+..+19)/2
B=20+190/2=115
Đảm bảo chính xác 1000000%
Ủng hộ cho mình nhen bạn