cho đa thức A = 11x4y3z2+20x2yz-(4xy2z-10x2yz+3x4y3z2)-(2008xyz2+8x4y3z2)
a) xác định bậc của A
b) Tìm giá trị của A khi 15x-2y=1004z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : 1/1.6+1/6.11+1/11.16+....+1/96.101
= 1/5.5/1.6+ 1/5.5/6.11+1/5.5/11.16+...+1/5.5/96.101
=1/5 . ( 5/1.6+5/6.11+5/11.16+...+5/96.101)
=1/5 . ( 1/1-1/6 +1/6-1/11+1/11-1/16+....+1/96-1/101)
=1/5 . (1/1-1/101)
=1/5 . 100/101
= 20/101
5A=\( 1-{1\over 6}+{1\over 6}-{1\over 11}+...{1\over 96}-{1\over 101}\)
=\(1- {1 \over 101}={100 \over 101}\)
suy ra A =\({20 \over 101}\)
Ta có:2bd=c(b+d)
<=>2bd=bc+cd
Mà a+c=2b( theo đề)
=>(a+c).d=bc+cd
=>ad+cd=bc+cd
=>ad=bc ( cùng bớt 2 vế cho cd)
=>a/b=c/d (đpcm)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\({1+3y \over 12}={1+5y \over 5x}={1+7y \over 4x}={1+5y \over 4+3x}\)
Suy ra: 5x=3x+4 nên x = 2 từ đó tìm y
Ta có: \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)
\(\Rightarrow\) \(\frac{z-5}{6}=\frac{x-1}{2}=\frac{y+3}{4}\)
\(\Rightarrow\frac{5z-25}{30}=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{\left(5z-3x-4y\right)-25+3-12}{30-6-16}=\frac{50-34}{8}=\frac{16}{8}=2\)
\(\Rightarrow\)x = 5
y = 5
z = 17
x-1/2=y+3/4=z-5/6=k suy ra x-1=2k;y+3=4k;z-5=6k va x=2k+1;y=4k-3;z=6k+5
5(6k+5)-3(2k+1)-4(4k-3)=25+30k-3+6k-16k-12=(25-3-12)+(30k+6k-16k)
=10+20k=50 suy ra 20k=50-10=40 suy ra k=40:20=2
x=2.2+1=5
y=2.4-3=5
z=2.6+5=17
\(=>A=\frac{-\left(2x-1\right)}{x+3}=\frac{-2x+1}{x+3}=\frac{-2x-6+7}{x+3}=-2+\frac{7}{x+3}\)\(=>\frac{7}{2x+3}\)thuộc Z
=> 7 chia hết cho 2x+3
đến đây bạn tự giải nhé
x-y-z=0=>x=y+z
=>z=x-y;=>y=x-z
\(=>B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1-\frac{y}{z}\right)=\left(1-\frac{x-y}{x}\right)\cdot\left(1-\frac{y+z}{y}\right)\cdot\left(1+\frac{x-z}{z}\right)\)
Câu a cậu ghi sai đầu bài rồi hay sao í! phải là \(\frac{6}{36.46}\) chứ
a) Một số tự nhiên chẵn có dạng 2k (k(N), khi đó (2k)2 = 4k2 là số chia hết cho 4 còn số tự nhiên lẻ có dạng 2k+1 (k(N) ,
Khi đó (2k+1)2 = 4k2+ 4k +1 là số chia cho 4 dư 1. Như vậy một số chính phương hoặc chia hết cho 4 hoặc chia cho 4 dư 1 , do đó không thể viết đựơc dưới dạng 4n+2 hoặc 4n+3(n(N)
b) Một số tự nhiên chỉ có thể viết dưới dạng 3k hoặc 3k± 1 (k( N)
khi đó bình phương của nó có dạng (3k)2 =9k2 là số chia hết cho 3 ,hoặc có dạng (3k± 1) 2 = 9k2 ± 6k +1 là số khi chia cho 3 thì dư 1.
Như vậy một số chính phương không thể viết dưới dạng 3n+2(n(N) ĐPCM.
n là số tự nhiên có 2 chữ số nên 10< hoặc = n <100 do đó 21< hoac bang 2n+1<201
2n+1 là số chính phương lẻ nên 2n+1 chỉ có thể nhận 1 trong các giá trị 25;49;81;121;169
suy ra n chỉ có thể nhận 1 trong các giá trị 12;24;40;60;84
suy ra 3n+1 chỉ có thể nhận 1 trong các giá trị 37;73;121;181;253
Trong các số trên chỉ có số 121=11^2 là 1 số chính phương
Vậy số n tự nhiên có 2 chữ số cần tìm là 40