S = \(\frac{1}{50}\)+ \(\frac{1}{51}\)+ \(\frac{1}{52}\)+ ...... + \(\frac{1}{98}\)+ \(\frac{1}{99}\)'
Chứng tỏ tổng của các phân số sau đây lớn hơn 1
( Mai mình KT rồi )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nội quy tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không k "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
a. x+1/2=3/4
x =3/4 - 1/2
x = 1/4
b. 4/5.x=4/7
x =4/7 : 4/5
x = 4/7 . 5/4
x = 5/7
c. 8x=7,8+25
8x=32,8
x= 32,8 : 8
x= 4,1
a) x=\(\frac{3}{4}-\frac{1}{2}\)
=\(\frac{1}{4}\)
b)x\(=\frac{4}{7}:\frac{4}{5}\)
x\(=\frac{4}{7}.\frac{5}{4}\)
x\(=\frac{5}{7}\)
c)8x= 32,8
x=4,1
a) ta có:
\(\frac{n+1}{2n+3}\)là phân số tối giản thì:
\(\left(n+1;2n+3\right)=d\)
Điều Kiện;d thuộc N, d>0
=>\(\hept{\begin{cases}2n+3:d\\n+1:d\end{cases}}=>\hept{\begin{cases}2n+3:d\\2n+2:d\end{cases}}\)
=>2n+3-(2n+2):d
2n+3-2n-2:d
hay 1:d
=>d=1
Vỵ d=1 thì.....
Bài 2 :
Để A = (n+2) : (n-5) là số nguyên thì n+2 phải chia hết cho n-5
Mà n-5 chia hết cho n-5
=> (n+2) - (n-5) chia hết cho n-5
=> (n-n) + (2+5) chia hết cho n-5
=> 7 chia hết cho n-5
=> n-5 thuộc Ư(5) = { 1 : -1 ; 7 ; -7 }
Ta có bảng giá trị
n-5 | 1 | -1 | 7 | -7 |
n | 6 | 4 | 12 | -2 |
A | 8 | -6 | 2 | 0 |
KL | TMĐK | TMĐK | TMĐK | TMĐK |
Vậy với n thuộc { -2 ; 4 ; 6 ; 12 } thì A là số nguyên
Ta có :
\(\frac{1}{50}>\frac{1}{100}\)
\(\frac{1}{51}>\frac{1}{100}\)
\(\frac{1}{52}>\frac{1}{100}\)
\(............\)
\(\frac{1}{98}>\frac{1}{100}\)
\(\frac{1}{99}>\frac{1}{100}\)
\(\Rightarrow\)\(S=\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\)
Do từ \(50\) đến \(99\) có \(99-50+1=50\) số nên có \(50\) phân số \(\frac{1}{100}\)
Suy ra :
\(S>50.\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)
Vậy \(S>\frac{1}{2}\)
Chúc bạn học tốt ~
Mình nhầm chứng tỏ tổng của các phân số sau đây lớn hơn \(\frac{1}{2}\)