K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

xét tam giác ABM và tam giác AMD có:

          AB < AC (gt)

          AM chung

         góc A1 = góc A2 (gt)

=> tam giác ABM = tam giác AMD (g.c.g)

=> BM = MD (cạnh tương ứng)

b) vì AB < AC (gt)

=> BM < CM (định lý)

t i c k nhé

ak lộn chỗ này: ngay chỗ xét tam giác có AB = AD nhé chứ ko phải AB < AC nhé!!!

56768769

30 tháng 4 2016

1) 

Ta có : 

x2 - 6x 

=) x ( x - 6 ) 

  • x = 0
  • x - 6 = 0 =) x = 6 

Vậy x = { 0 : 6 }

30 tháng 4 2016

2) 

Ta có : 

x4+x3+x+1 = 0 

=) x. x + x2 . x + x + 1 = 0

=) x2 ( x . x . x ) + x + 1 = 0

=) x = -1 

Vậy x = -1

30 tháng 4 2016

1) 

Ta có : 

x2 - 2x = 0 

=) x ( x- 2 ) = 0

  • x = 0
  • x - 2 = 0 =) x = 2

Vậy x = { 0 ; 2 )

30 tháng 4 2016

Ta có : x 2 - 2x = 0

=> x ( x- 2 ) = 0

x = 0

x - 2 = 0

=> x = 2 Vậy x = { 0 ; 2 )

30 tháng 4 2016

mình mua khi nào bạn đọc được thì kết bạn với mình rồi bán nha

21 tháng 11 2021

nônnonononononononononono

Bạn tự vẽ hình nha!!!

a.

ABC = MBD (2 góc đối đỉnh)

ACB = NCE (2 góc đối đỉnh)

mà ABC = ACB (tam giác ABC cân tại A)

=> MBD = NCE

Xét tam giác MBD vuông tại M và tam giác NCE vuông tại N có:

MBD = NCE (chứng minh trên)

BD = CE (gt)

=> Tam giác MBD = Tam giác NCE (cạnh huyền - góc nhọn)

=> DM = EN (2 cạnh tương ứng)

b.

AD = AB + BD

AE = AC + CE

mà AB = AC (tam giác ABC cân tại A)

      BD = CE (gt)

=> AD = AE

Xét tam giác ADM và tam giác AEN có:

DM = EN (theo câu a)

MDA = NEA (tam giác MBD = tam giác NCE)

AD = AE (chứng minh trên)

=> Tam giác ADM = Tam giác AEN (c.g.c)

30 tháng 4 2016

a.

ABC = MBD (2 góc đối đỉnh)

ACB = NCE (2 góc đối đỉnh)

mà ABC = ACB (tam giác ABC cân tại A)

=> MBD = NCE

Xét tam giác MBD vuông tại M và tam giác NCE vuông tại N có:

MBD = NCE (chứng minh trên)

BD = CE (gt)

=> Tam giác MBD = Tam giác NCE (cạnh huyền - góc nhọn)

=> DM = EN (2 cạnh tương ứng)

b.

AD = AB + BD

AE = AC + CE

mà AB = AC (tam giác ABC cân tại A)

      BD = CE (gt)

=> AD = AE

Xét tam giác ADM và tam giác AEN có:

DM = EN (theo câu a)

MDA = NEA (tam giác MBD = tam giác NCE)

AD = AE (chứng minh trên)

=> Tam giác ADM = Tam giác AEN (c.g.c)

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

5

Bạn tự vẽ hình nha!!!

3a.

Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:

ABD = EBD (BD là tia phân giác của ABE)

BD là cạnh chung

=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)

=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE

=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE

=> BD là đường trung trực của AE.

3b.

Xét tam giác AFD và tam giác ECD có:

FAD = CED ( = 90 )

AD = ED (tam giác ABD = tam giác EBD)

ADF = EDC (2 góc đối đỉnh)

=> Tam giác ADF = Tam giác EDC (g.c.g)

=> DF = DC (2 cạnh tương ứng)

3c.

Tam giác ADF vuông tại A có:

AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)

mà FD = CD (theo câu b)

=> AD < CD.

30 tháng 4 2016

3a.

Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:

ABD = EBD (BD là tia phân giác của ABE)

BD là cạnh chung

=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)

=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE

=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE

=> BD là đường trung trực của AE.

3b.

Xét tam giác AFD và tam giác ECD có:

FAD = CED ( = 90 )

AD = ED (tam giác ABD = tam giác EBD)

ADF = EDC (2 góc đối đỉnh)

=> Tam giác ADF = Tam giác EDC (g.c.g)

=> DF = DC (2 cạnh tương ứng)

3c.

Tam giác ADF vuông tại A có:

AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)

mà FD = CD (theo câu b)

=> AD < CD.

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

1
30 tháng 4 2016

Bài 4: a) Xét ABE vàHBE có:
BE chung
ABE= EBH (vì BE là phân giác)
=> ABE=HBE (cạnh huyền- góc nhọn)
b, Vì ABE=HBE(cmt)
=> BA = BH và EA = EH 
=> điểm B, E cách đều 2 mút của đoạn thẳng AH 
=>BE là đường trung trực của đoạn thẳng AH
c, Vì AC vuông góc BK => EAK = \(90\) độ
EH vuông góc BC => EHC = 90 độ
Xét AEK vàHEC có:
EAK = EHC (= 90độ)(cmt)
AE = EH (cmt)
AEK = HEC (đối đỉnh)
=> AEK HEC (g.c.g)
=> EK = EC (2 cạnh tương ứng)
Xét HEC vuông tại H (vì EHC = 90 độ )
có EH < EC(cạnh huyền lớn hơn cạnh góc vuông)
Mà AE = EH (cmt) => AE < EC
 

30 tháng 4 2016

BM và CM là gì vậy

30 tháng 4 2016

BM=CM co nghia la am la duong trung tuyen cua tam giac ABC

30 tháng 4 2016

Tự vẽ hình 

a) Tớ sửa đề xíu nha Tam giác ABM= tam giác CAM

Xét ...... ( tự làm ) 

=) Tam giác ABM= tam giác CBM ( c - c - c )

b) 

sai đề 

c)

30 tháng 4 2016

sai đề