Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ DE vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng: a) BD là đường trung trực của AE. b) AD<DC c) Ba điểm E, D, F thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
2 - x2 = 0
=) x2 = 2
=) x = \(\sqrt{2}\)
Vậy x = \(\sqrt{2}\) là một nghiệm của đa thức M(x) = 2 - x2
kkkkkkkkkkkkkkkkkkkkkkkkkkk
k
k
k
k
kkkkkkkkkk
kk
kk
kk
kk
kk
kkkkkkkkkk
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
kkkkkkkkkkkkkkkkkkkk
123456789
00000000000
0
0
0
0
0
0
01233333333333
C2
Xét tam giác ADF và tam giác EDC có :
DA = DE ( Cmt )
DEF = DEC
AF = EC ( Cmt )
=) ........ ( c.g.c )
=) ADF = EDC ( ...)
mà : EDC + EDA = 180 ĐỘ
=) EDA + ADF = 180 độ
=) E D F thẳng hàng
k cko mk ddi
xem lại đề : sao BD _|_ BC đc?