Đơn giản biểu thức sau: (a + b + c)^3 + ( a - b - c)^3 - 6a(b + c)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a^2+b^2 = a^2+2ab+b^2-2ab
= (a+b)^2 - 2ab
= 5^2-2.6= 13
X^2n - 4 X^n.Y^n-1 + 4Y^2(n-1)
(X ^ n)^2 - 2. X^n.2. Y^n-1 + (2Y ^n-1)^2
= ( X ^N - 2Y^n-1 ) ^2
(x+y)2=x2+y2+2xy
=>x2+y2=(x+y)2-2xy=52-2.5
=25-10
=15
(x+y)3=x3+y3+3x2y+3xy2
(x+y)3=x3+y3+3xy(x+y)
=>x3+y3=(x+y)3-3xy(x+y)
=53-3.5.5
=125-75=50
=>(x2+y2)(x3+y3)=x5+x2y3+x3y2+y5
(x2+y2)(x3+y3)=x5+y5+xy(x+y)
=>x5+y5=(x2+y2)(x3+y3)-xy(x+y)
=15.50-5.5=725
\(\frac{AD}{AB}=\frac{AE}{AC}\)=> DE//BC (TA LÉT)
TAM GIÁC ABI: DH//IB => \(\frac{DH}{IB}=\frac{AH}{AI}\); TAM GIÁC AIC: \(\frac{HE}{IC}=\frac{AH}{AI}\)
=> \(\frac{DH}{IB}=\frac{HE}{IC}\) MÀ IB=IC => HE=HD
(2+1)(2^2+1)(2^4 +1)(2^8+1)(2^16+1) - 2^32
=1.(2+1)(22+1)(24 +1)(28+1)(216+1) - 232
=(2-1).(2+1)(22+1)(24 +1)(28+1)(216+1) - 232
=(22-1)(22+1)(24 +1)(28+1)(216+1) - 232
=(24-1)(24 +1)(28+1)(216+1) - 232
=(28-1)(28+1)(216+1) - 232
=(216-1)(216+1) - 232
=232-1-232
=-1
(2+1 ) ( 2^2 + 1) ... (2^16 + 1) - 2^32
= 3 ( 2^2 + 1) ....( 2^16 + 1) -2^32
= ( 2^2 - 1)( 2^2 +1)....(2^16 + 1 ) - 2^32
= (2^4 - 1)( 2^4 + 1)( 2^8 + 1)( 2^16 + 1) - 2^32
= ( 2^8 - 1) ( 2^8 + 1) ( 2^16 - 1 ) - 2^32
= ( 2^ 16 - 1) (2^16 + 1) - 2^32
= 2^32 - 1 - 2^32
=-1
( a + b + c)3 + (a - b - c)3 - 6a( b+ c)2
= ( a+ b + c + a - b - c)[ (a+b+c)2 + (a+b+c)(a-b-c) + (a-b-c)2 ] - 6a( b+c)2
= 2a [ a2 + b2 + c2 + 2ab+ 2bc+ 2ac + a2 - ( b+ c)2 + a2 + b2 + c2 - 2ab - 2ac + 2bc] - 6a ( b+c)2
= 2a [ 3a2 + 2b2 + 2c2 + 4bc - (b+c)2 - 3(b+c)2}
= 2a ( 3a2 + 2b2 + 2c2 - 4( b+ c)2 + 4bc}
Đặt \(b+c=x\)
Biểu thức đã cho \(=\left(a+x\right)^3+\left(a-x\right)^3-6ax^2=a^3+3a^2x-3ax^2+x^3+a^3-3a^2x+3ax^2-x^3-6ax^2=2a^3\)