Cho a+b=2 tìm gtnn của A=a2+b2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(2x^3-50x=0\Leftrightarrow2x\left(x^2-25\right)=0\Leftrightarrow x=0;x=\pm5\)
2, \(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\Leftrightarrow5\left(x-1\right)\left(x+1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left[5\left(x+1\right)-4\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+9\right)=0\Leftrightarrow x=-9;x=1\)
3, \(6x\left(x-2\right)=x-2\Leftrightarrow\left(6x-1\right)\left(x-2\right)=0\Leftrightarrow x=\frac{1}{6};x=2\)
4, \(7\left(x-2020\right)^2-x+2020=0\Leftrightarrow7\left(x-2020\right)^2-\left(x-2020\right)=0\)
\(\Leftrightarrow\left(x-2020\right)\left[7\left(x-2020\right)-1\right]=0\Leftrightarrow x=2020;x=\frac{14141}{7}\)
5, \(x^2-10x=-25\Leftrightarrow x^2-10x+25=0\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x=5\)
6, \(x^2-2x-3=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\Leftrightarrow x=-1;x=3\)
\(1,\)
\(2x^3-50x=0\)
\(\Leftrightarrow2x\left(x^2-25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-25=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)
\(2,\)
\(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)
\(\Leftrightarrow x^2+8x-9=0\)
\(\Leftrightarrow x^2-x+9x-9=0\)
\(\Leftrightarrow x\left(x-1\right)+9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+9=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-9\\x=1\end{cases}}\)
\(3,\)
\(6x\left(x-2\right)=x-2\)
\(\Leftrightarrow6x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(6x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{1}{6}\end{cases}}\)
\(4,\)
\(7\left(x-2020\right)^2-x+2020=0\)
\(\Leftrightarrow7\left(x-2020\right)^2-\left(x-2020\right)=0\)
\(\Leftrightarrow\left(x-2020\right)[7\left(x-2020\right)-1]=0\)
\(\Leftrightarrow\left(x-2020\right)[7x-14141]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2020\\7x=14141\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=\frac{14141}{7}\end{cases}}\)
\(5,\)
\(x^2-10x=-25\)
\(\Leftrightarrow x^2-10x+25=0\)
\(\Leftrightarrow\left(x-5\right)^2=0\)
\(\Leftrightarrow x-5=0\)
\(\Leftrightarrow x=5\)
\(6,\)
\(x^2-2x-3=0\)
\(\Leftrightarrow x^2-3x+x-3=0\)
\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
\(1,\)
\(x^2-y^2-2x+2y\)
\(=\left(x^2-y^2\right)-\left(2x-2y\right)\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
\(2,\)
\(x^2-25+y^2+2xy\)
\(=\left(x^2+2xy+y^2\right)-25\)
\(=\left(x+y\right)^2-5^2\)
\(=\left(x+y-5\right)\left(x+y+5\right)\)
\(3,\)
\(x^2y-x^3-9y+9x\)
\(=\left(x^2y-x^3\right)-\left(9y-9x\right)\)
\(=x^2\left(y-x\right)-9\left(y-x\right)\)
\(=\left(x^2-9\right)\left(y-x\right)\)
\(=\left(x-3\right)\left(x+3\right)\left(y-x\right)\)
\(4,\)
\(x^4+2x^3+x^2\)
\(=x^2\left(x^2+2x+1\right)\)
\(=x^2\left(x+1\right)^2\)
\(5,\)
\(x^4-8x\)
\(=x\left(x^3-8\right)\)
\(=x\left(x-2\right)\left(x^2+2x+4\right)\)
1, \(x^2-y^2-2x+2y=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)=\left(x+y-2\right)\left(x-y\right)\)
2, \(x^2-25+y^2+2xy=\left(x+y\right)^2-5^2=\left(x+y-5\right)\left(x+y+5\right)\)
3, \(x^2y-x^3-9y+9x=x^2\left(y-x\right)-9\left(y-x\right)=\left(x-3\right)\left(x+3\right)\left(y-x\right)\)
4, \(x^4+2x^3+x^2=x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2\)
5, \(x^4+8x=x\left(x^3+8\right)=x\left(x+8\right)\left(x^2-8x+64\right)\)
\(B=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)
\(=x^3-3x^2+3x-1-\left(x^3+3x^2+3x+1\right)+6\left(x^2+1\right)\)
\(=x^3-3x^2+3x-1-x^3-3x^2-3x-1+6x^2-6\)
\(=-6x^2-2+6x^2-6\)
\(=-8\)
Vậy biểu thức không phụ thuộc vào biến
\(B=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)
\(=x^3-3x^2+3x-1-x^3-3x^2-3x-1+6\left(x^2-1\right)\)
\(=-6x^2-2+6x^2-6=-8\)
Vậy biểu thức ko phụ thuộc vào giá trị biến x
\(4x^2-12x-7\)
\(=4x^2+2x-14x-7\)
\(=2x\left(2x+1\right)-7\left(2x+1\right)\)
\(=\left(2x+1\right)\left(2x-1\right)\)
Cách 1:
\(4x^2-12x-7\)
\(=\left(4x^2-12x+9\right)-16\)
\(=\left(2x-3\right)^2-4^2\)
\(=\left(2x-3-4\right)\left(2x-3+4\right)\)
\(=\left(2x-7\right)\left(2x+1\right)\)
Cách 2:
\(4x^2-12x-7\)
\(=4x^2+2x-14x-7\)
\(=2x\left(2x+1\right)-7\left(2x+1\right)\)
\(=\left(2x+1\right)\left(2x-7\right)\)
Đặt x + 4 = a ; 2a - 5 = b ; 1 - 3x = c
Nhận thấy a + b + c = 0
=> a + b = -c
<=> (a + b)5 = (-c)5
<=> a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5 = -c5
<=> a5 + b5 + c5 = -5ab(a3 + 2a2b + 2ab2 + b3)
= -5ab[(a3 + b3) + 2ab(a + b)]
= -5ab(a + b)(a2 + b2 + ab)
= 5abc(a2 + b2 + ab) = 0
=> 5(x + 4)(2x - 5)(1 - 3x)[(x + 4)2 + (2x - 5)2 + (x + 4)(2x - 5)] = 0
<=> 5(x + 4)(2x - 5)(1 - 3x) = 0 (vì [(x + 4)2 + (2x - 5)2 + (x + 4)(2x - 5) > 0 với mọi x)
=> x = -4 hoặc x = 2,5 hoặc x = 1/3
Vậy \(x\in\left\{-4;2,5;\frac{1}{3}\right\}\)là nghiệm phương trình
Có đoạn này em không hiểu, tại sao (x+4)^2 + (2x-5)^2 + (x+4)(2x-5) > 0 với mọi x ạ?
d) \(25x^6-\frac{4y^2}{49}=\left(5x^3\right)^2-\left(\frac{2y}{7}\right)^2=\left(5x^3-\frac{2y}{7}\right)\left(5x^3+\frac{2x}{7}\right)\)
e) \(27x^3-\frac{1}{8}=\left(3x\right)^3-\left(\frac{1}{2}\right)^3=\left(3x-\frac{1}{2}\right)\left(9x^2+\frac{3}{2}x+\frac{1}{4}\right)\)
f ) \(125x^3-1=\left(5x\right)^3-1=\left(5x-1\right)\left(25x^2+5x+1\right)\)
g) \(8x^3+125=\left(2x\right)^3+5^3=\left(2x+5\right)\left(4x^2-10x+25\right)\)
h) \(x^3+\frac{y^3}{8}=x^3+\left(\frac{y}{2}\right)^3=\left(x+\frac{y}{2}\right)\left(x^2-\frac{xy}{2}+\frac{y^2}{4}\right)\)
i ) \(y^3-27x^3=y^3-\left(3x\right)^3=\left(y-3x\right)\left(y^2+3xy+9x^2\right)\)
Có \(a-b=2\Leftrightarrow a=2+b\)
Thay vào \(a.b=3\Leftrightarrow\left(b+2\right)b=b^2+2b=3\Leftrightarrow b^2+2b-3=0\)
\(\Leftrightarrow\left(b+3\right)\left(b-1\right)=0\Leftrightarrow\orbr{\begin{cases}b=-3\\b=1\end{cases}\Leftrightarrow\orbr{\begin{cases}a=-1\\a=3\end{cases}}}\)
Thay từng trường hợp vào P và Q
\(A=a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{4}{2}=2\)
Dấu ''='' xảy ra khi a = b = 1
Vậy GTNN của A bằng 2 tại a = b = 1
\(A=a^2+b^2\)
\(=\left(a+b\right)^2-2ab\)
\(=4-2ab\)
Giả sử \(a;b\ge0\)
Áp dụng bất đẳng thức Cô-si cho hai số a;b dương thì ta có:
\(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow\left(\frac{a+b}{2}\right)^2\ge ab\)
\(\Leftrightarrow1\ge ab\)
\(\Rightarrow-2ab\ge-2\)
\(\Leftrightarrow4-2ab\ge2\)
\(\Leftrightarrow A\ge2\)
Vậy \(MinA=2\)
Dấu '' = '' xảy ra khi: \(a=b=1\)