K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2021

\(4P=\frac{8x^2+4y^2-8xy}{xy}=\frac{\left(x^2-4xy+4y^2\right)+\left(7x^2-4xy\right)}{xy}\)

\(=\frac{\left(x-2y\right)^2+\left(14xy-4xy\right)}{xy}\ge10\)

\(\Rightarrow P\ge\frac{10}{4}=\frac{5}{2}\)

Dấu = xảy ra khi x = 2y

23 tháng 3 2021

Áp dụng bất đẳng thức AM-GM ta có :

\(4x+\frac{1}{4x}\ge2\sqrt{4x\cdot\frac{1}{4x}}=2\)

=> \(A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016\)

=> \(A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014\)

=> \(A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014\)

hay \(A\ge2014\). Đẳng thức xảy ra <=> \(\hept{\begin{cases}4x=\frac{1}{4x}\\2\sqrt{x}-1=0\end{cases}}\Rightarrow x=\frac{1}{4}\)

Vậy GTNN của A = 2014 <=> x = 1/4

23 tháng 3 2021

Bài 1

*Chứng minh bằng AM-GM

Áp dụng bất đẳng thức AM-GM ta có :

\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{cases}\Rightarrow}\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{abc}}=9\sqrt[3]{abc\cdot\frac{1}{abc}}=9\)

Vậy ta có đpcm

Đẳng thức xảy ra <=> a=b=c

23 tháng 3 2021

Bài 1

*Chứng minh bằng Cauchy-Schwarz

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}\)

=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\cdot\frac{9}{a+b+c}=9\left(đpcm\right)\)

Đẳng thức xảy ra <=> a=b=c

23 tháng 3 2021

\(Q=\sqrt{2a+bc}+\sqrt{2b+ca}+\sqrt{2c+ab}\)

\(\Rightarrow Q^2=\left(\sqrt{2a+bc}+\sqrt{2b+ca}+\sqrt{2c+ab}\right)^2\)

Vì \(a,b,c>0\)nên áp dụng bất đẳng thức Bunhiacopxki, ta được:

\(\left(\sqrt{2a+bc}+\sqrt{2b+ca}+\sqrt{2c+ab}\right)^2\)\(\le\left(1^2+1^2+1^2\right)\left[\left(\sqrt{2a+bc}\right)^2+\left(\sqrt{2b+ca}\right)^2+\left(\sqrt{2c+ab}\right)^2\right]\)

\(\Leftrightarrow Q^2\le3\left(2a+bc+2b+ca+2c+ab\right)\)

\(\Leftrightarrow Q^2\le3\left[2\left(a+b+c\right)+\left(ab+bc+ca\right)\right]\)

\(\Leftrightarrow Q^2\le6\left(a+b+c\right)+3\left(ab+bc+ca\right)\)

\(\Leftrightarrow Q^2\le6.2+3\left(ab+bc+ca\right)\)(vì \(a+b+c=2\))

\(\Leftrightarrow Q^2\le12+3\left(ab+bc+ca\right)\left(1\right)\)

\(a,b,c>0\)nên áp dụng bất dẳng thức Cô-si cho 2 số dương, ta được:

\(a^2+b^2\ge2ab\left(2\right)\);

\(b^2+c^2\ge2bc\left(3\right)\)

\(c^2+a^2\ge2ca\left(4\right)\)

Từ \(\left(2\right),\left(3\right),\left(4\right)\), ta được:

\(a^2+b^2+b^2+c^2+c^2+a^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge\)\(ab+bc+ca+2ab+2bc+2ca\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow2^2\ge3\left(ab+bc+ca\right)\)(vì \(a+b+c=2\))

\(\Leftrightarrow4\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow4+12\ge3\left(ab+bc+ca\right)+12\)

\(\Leftrightarrow3\left(ab+bc+ca\right)+12\le16\left(5\right)\)

Từ (1) và (5), ta được:

\(Q^2\le16\)

\(\Leftrightarrow Q\le4\)

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\a+b+c=2\end{cases}}\Leftrightarrow a=b=c=\frac{2}{3}\)

Vậy \(maxQ=4\Leftrightarrow a=b=c=\frac{2}{3}\)

23 tháng 3 2021

\(S=\frac{a}{a^2+1}+\frac{5\left(a^2+1\right)}{2a}=\frac{a}{a^2+1}+\frac{10\left(a^2+1\right)}{4a}\)

\(S=\frac{a}{a^2+1}+\frac{a^2+1}{4a}+\frac{9\left(a^2+1\right)}{4a}\)

Vì \(a>0\)nên áp dụng bất dẳng thức Cô-si cho 2 số dương, ta được:

\(\frac{a}{a^2+1}+\frac{a^2+1}{4a}\ge2\sqrt{\frac{a\left(a^2+1\right)}{4\left(a^2+1\right)a}}=2\sqrt{\frac{1}{4}}=2.\frac{1}{2}=1\left(1\right)\)

Vì \(a>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(a^2+1\ge2a\)

\(\Leftrightarrow9\left(a^2+1\right)\ge9.2a=18a\)

\(\Leftrightarrow\frac{9\left(a^2+1\right)}{4a}\ge\frac{18a}{4a}=\frac{9}{2}\left(2\right)\)(vì \(a>0\))

Từ (1) và (2), ta được:

\(\frac{a}{a^2+1}+\frac{a^2+1}{4a}+\frac{9\left(a^2+1\right)}{4a}\ge1+\frac{9}{2}\)

\(\Leftrightarrow S\ge\frac{11}{2}\)

Dấu bằng xảy ra

\(\Leftrightarrow\orbr{\begin{cases}\frac{a}{a^2+1}=\frac{a^2+1}{4a}\\a^2=1\end{cases}}\Leftrightarrow a=1\)(thỏa mãn \(a>0\))

Vậy \(minS=\frac{11}{2}\Leftrightarrow a=1\)