x^3-2x^2+x-2=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q\left(2\right)=4a+2b+c\)
\(Q\left(-1\right)=a-b+c\)
\(Q\left(2\right)+Q\left(-1\right)=5a+b+2c=0\)
\(\Leftrightarrow Q\left(2\right)=-Q\left(-1\right)\)
\(Q\left(2\right).Q\left(-1\right)=-Q\left(-1\right)^2\le0\)
Xét hình thang ABCD (AB//CD) có:
AM=MD=12AD
BN=NC=12BC
⇒MN⇒MN là đường trung bình
⇒ \(\hept{\begin{cases}MN=(AB+CD)/2=3AB/2\\MN//AB//CD\end{cases}} \)
Xét △ABD có:
AM=MD=12AD
AP//AB
⇒AP=12AB (1)
Xét △ABC có:
BN=NC=12BC
NQ//AB
⇒NQ=12AB(2)
Ta lại có:
MP+PQ+QN=MN
⇔PQ=MN−MP−NQ
⇔PQ=3AB2−12AB−12AB
⇔PQ=12AB(3)
Từ (1)(2)(3)⇒MP=PQ=QN
2x(x - 7) + 5x - 35 = 0
=> 2x(x - 7) + 5(x - 7) = 0
=> (x - 7)(2x + 5) = 0
=> x - 7 = 0 hoặc 2x + 5 = 0
=> x = 7 hoặc x = -5/2
Trả lời:
\(2x\left(x-7\right)+5x-35=0\)
\(\Leftrightarrow2x\left(x-7\right)+5\left(x-7\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\2x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-\frac{5}{2}\end{cases}}}\)
Vậy x = 7; x = - 5/2 là nghiệm của pt.
\(C=3x^2+5x+3=3\left(x^2+\frac{5}{3}x+1\right)=3\left(x^2+2.\frac{5}{6}x+\frac{25}{36}+\frac{11}{36}\right)\)
\(=3\left(x+\frac{5}{6}\right)^2+\frac{11}{12}\ge\frac{11}{12}\)
Dấu \(=\)khi \(x=-\frac{5}{6}\)
\(D=7-4x^2-2x=-4\left(x^2+\frac{1}{2}x-\frac{7}{4}\right)=-4\left(x^2+2.\frac{1}{4}x+\frac{1}{16}-\frac{29}{16}\right)\)
\(=-4\left(x+\frac{1}{4}\right)^2+\frac{29}{4}\le\frac{29}{4}\)
Dấu \(=\)khi \(x=-\frac{1}{4}\).
Trả lời:
\(x^{10}-1=\left(x^5\right)^2-1^2=\left(x^5-1\right)\left(x^5+1\right)\)
...
\(x^{10}-1=\left(x^5-1\right)\left(x^5+1\right)\)
\(=\left(x-1\right)\left(x^4+x^3+x^2+1\right)\left(x+1\right)\left(x^4-x^3+x^2-x+1\right)\)
Do AB // CD ( GT )
⇒^A+^C=180o
⇒2^C+^C=180o
⇒3^C=180o
⇒^C=60o
⇒ ^A = 60o * 2 = 120o
Do ABCD là hình thang cân
⇒ ^C = ^D
Mà ^C = 60o
⇒ ^D = 60o
AB // CD ⇒ ^D + ^B = 180o
⇒ˆB=180o − 60o = 120o
Vậy ^A = ^B = 120o ; ^C= ^D = 60o
Xét 2 tam giác : Tam giác ADB và tam giác BCA có :
AB : Cạnh chung
^DAB=^CBA (Tính chất của hình thang cân)
AC = BD ( Tính chất của hình thang cân)
⇒ ΔADB = ΔBCA ( c−g−c)
⇒ ^CAB = ^DBA (2 góc tương ứng)
⇒ ^OAB = ^OBA
=> Tam giác OAB cân
=> OA = OB
=> Điều phải chứng minh
62 . 58 = (60 + 2)(60 - 2) = 60\(^2\) - 2\(^2\) = 3600 - 4 = 3596
199\(^2\) = (200 -1)\(^2\) = 200\(^2\) - 2.200.1 + 1\(^2\) = 40 000 - 400 + 1 = 39601
499\(^2\) = (500 - 1)\(^2\) = 500\(^2\) - 2.500.1 + 1\(^2\) = 250 000 - 1000 + 1 = 249 001
299 . 301 = (300 - 1)(300 + 1) = 300\(^2\) - 1\(^2\) = 90 000 - 1 = 89 999
Học tốt
Đúng thì k cho mk nhé
Trả lời:
+, \(62.58=\left(60+2\right)\left(60-2\right)=60^2-2^2=3600-4=3596\)
+, \(199^2=\left(200-1\right)^2=200^2-2.200.1+1^2=40000-400+1=39601\)
+, \(499^2=\left(500-1\right)^2=500^2-2.500.1+1^2=250000-1000+1=249001\)
+, \(299.301=\left(300-1\right)\left(300+1\right)=300^2-1=90000-1=89999\)
X^3 - 2x^2 + x - 2 = 0
=>x^2(x-2)+(x-2)=0
=>(x^2+1)(x-2)=0
=>x^2+1=0 or x-2=0
=> x^2=-1 ( vô lí ) or x=2
=>x=2
Trả lời:
\(x^3-2x^2+x-2=0\)
\(\Leftrightarrow\left(x^3-2x^2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow x^2\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x-2=0\)( vì \(x^2+1\ge1>0\forall x\) )
\(\Leftrightarrow x=2\)
Vậy x = 2 là nghiệm của pt.