bài 1: Phân tích đa thức thành nhân tử
a, x²-5x³ +8x² - 4x
b, x4-6x3 +11x²-6x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`M + 3x^2 - 4 + 5x = x^2 - 4x`
`M = x^2 - 4x - 3x^2 + 4 - 5x`
` M = -2x^2 - 9x + 4`
Vậy ...
a; A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{\left(2n\right)^2}\)
A = \(\dfrac{1}{2^2}\).(\(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{n^2}\))
A = \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ... + \(\dfrac{1}{n.n}\))
Vì \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\); \(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\); ...; \(\dfrac{1}{n.n}\) < \(\dfrac{1}{\left(n-1\right)n}\)
nên A < \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{\left(n-1\right)n}\))
A < \(\dfrac{1}{4.}\)(1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{n-1}\) - \(\dfrac{1}{n}\))
A < \(\dfrac{1}{4}\).(1 + 1 - \(\dfrac{1}{n}\))
A < \(\dfrac{1}{4}\).(2 - \(\dfrac{1}{n}\))
A < \(\dfrac{1}{2}\) - \(\dfrac{1}{4n}\) < \(\dfrac{1}{2}\) (đpcm)
Từ "lạc trôi" có nghĩa là gì trong câu:
"Mây bềnh bồng lạc trôi/mượt mà như tuổi ngọc."
Ta có:
`10^9 - 1`
`= (10^3)^3 - 1^3`
`= 1000^3 - 1^3`
`= (1000 - 1)(1000^2 + 1000 . 1 + 1^2)`
`= 999 . (1000^2 + 1000 + 1) \vdots999 (đpcm)`
Vậy: `10^9 - 1 \vdots 999`
Cách 1:
(a\(x^2\) + b\(x\) + c).(\(x+3\))
= a\(x^3\) + 3a\(x^2\) + b\(x^2\) + 3b\(x\) + c\(x\) + 3c
= a\(x^3\) + (3a\(x^2\) + b\(x^2\)) + (3b\(x\) + c\(x\)) + 3c
= a\(x^3\) + \(x^2\).(3a + b) + \(x\).(3b + c) + 3c
a\(x^3\) + (3a + b)\(x^2\) + (3b + c)\(x\) + 3c = \(x^3\) + 2\(x^2\) - 3\(x\)
⇔ \(\left\{{}\begin{matrix}a=1\\3a+b=2\\3b+c=-3\\3c=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}a=1\\3+b=2\\3b+c=-3\\c=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}a=1\\b=2-3\\3b=-3\\c=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}a=1\\b=-1\\b=-1\\c=0\end{matrix}\right.\)
Vậy (a; b; c) = (1; -1; 0)
Cách hai ta có:
\(x^3\) + 2\(x^2\) - 3\(x\) = (\(x^3\) + 3\(x^2\)) - (\(x^2\) + 3\(x\))
\(x^3\) + 2\(x^2\) - 3\(x\) = \(x^2\).(\(x+3\)) - \(x\).(\(x+3\))
\(x^3\) + 2\(x^2\) - 3\(x\) = (\(x+3\)).(\(x^2\) - \(x\))
⇒ (a\(x^2\) + b\(x\) + c).(\(x\) + 3) = (\(x+3\)).(\(x^2\) - \(x\))
⇔ a\(x^2\) + b\(x\) + c = \(x^2\) - \(x\)
⇒ \(\left\{{}\begin{matrix}a=1\\b=-1\\c=0\end{matrix}\right.\)
Vậy (a; b; c) = (1; -1; 0)
\(x^3y^4\left(x^2-2y^3\right)-2x^3y^3\left(x^4-y^4\right)\)
\(=x^5y^4-2x^3y^7-2x^7y^3+2x^3y^7\)
\(=x^5y^4-2x^7y^3\)
`5x^2 (x-y) - 15xy(y-x) `
`= 5x^2 (x-y) + 15xy(x-y) `
`= (5x^2 + 15xy)(x-y) `
`= 5x(x + 3y)(x-y) `
`(x+y)^2 - 6(x+y) + 9` (sửa đề)
`= (x + y - 3)^2 `
`x^2 - 5x + 6`
`= x^2 - 2x - 3x +6`
`= (x^2 - 2x) - (3x - 6) `
`= x(x-2) - 3(x-2) `
`= (x-3)(x-2) `
Ta có:
`x^2+4x+1`
`=(x^2+4x+4)-3`
`=(x+2)^2-3`
`(x+2)^2>=0` với mọi x
`=>(x+2)^2-3>=-3` với mọi x
Dấu "=" xảy ra:
`x+2=0<=>x=2`
Vậy: ...
Ta có:
\(x^2+4x+1\\ =x^2+4x+2-1\\ =\left(x+2\right)^2-1\)
Vì: \(\left(x+2\right)^2\ge0\rightarrow\left(x+2\right)^2-1\ge-1\forall x\)
Vậy: GTNN là: \(-1\)
\(\left(x-2\right)^2-\left(x+1\right)\left(x-3\right)=-7\\ \Rightarrow x^2-4x+4-\left(x^2-2x-3\right)=-7\\ \Rightarrow x^2-4x+4-x^2+2x+3=-7\\ \Rightarrow-2x+7=-7\\ \Rightarrow-2x=-14\\ \Rightarrow x=-14:\left(-2\right)\\ \Rightarrow x=7\)
`a, x^3 - 5x^2 + 8x - 4`
`= x^3 - x^2 - 4x^2 + 4x + 4x - 4`
`= x^2(x- 1) - 4x(x - 1) + 4(x - 1)`
`= (x^2 - 4x + 4)(x - 1)`
`= (x- 2)^2(x - 1)`
a: \(x^4-6x^3+11x^2-6x+1\)
\(=x^4-3x^3+x^2-3x^3+9x^2-3x+x^2-3x+1\)
\(=x^2\left(x^2-3x+1\right)-3x\left(x^2-3x+1\right)+\left(x^2-3x+1\right)\)
\(=\left(x^2-3x+1\right)^2\)
b: \(x^4-5x^3+8x^2-4x\)
\(=x\left(x^3-5x^2+8x-4\right)\)
\(=x\left(x^3-x^2-4x^2+4x+4x-4\right)\)
\(=x\left[x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\right]\)
\(=x\left(x-1\right)\left(x^2-4x+4\right)=x\left(x-1\right)\left(x-2\right)^2\)