K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2015

ta có : \(n^2-3n+6\) chia hết cho 5 

<=> \(n^2-3n-4+10\) chia hết cho 5 

<=> \(\left(n+1\right)\left(n-4\right)+10\) chia hết cho 5          

    Vì 10 chia hết cho 5

=> \(\left(n+1\right)\left(n-4\right)\) chia hết cho 5 

    Nên : ta có 

               n+1=5k và n-4=5k

<=> n=5k-1 và n=5k+4

13 tháng 12 2015

\(B=\frac{3y^3-y^2-6y^2+2y+3y-1}{2y^3+3y^2-4y^2-6y+2y+3}=\frac{y^2\left(3y-1\right)-2y\left(3y-1\right)+\left(3y-1\right)}{y^2\left(2y+3\right)-2y\left(2y+3\right)+\left(2y+3\right)}=\frac{\left(3y-1\right)\left(y-1\right)^2}{\left(2y+3\right)\left(y-1\right)^2}=\frac{3y-1}{2y+3}\)

b) \(\frac{2B}{2y+3}=\frac{2\left(3y-1\right)}{\left(2y+3\right)^2}\in Z\) =. 2y+3 thuộc U(2) ={ -2;-1;1;2} => x thuộc {-1 ; -2}

                                                           hoặc (2y+3)2 =3y -1 =>

                                                           hoặc   (2y+3)2 =-3y +1  =>

c) B>/1  

+Nếu 2y+3 >0 hay y> -3/2 

  => 3y -1 > 2y+3 => y >4  => y thuộc { 5;6;7...}

+ Nếu  2y+3<0 hay y < -3/2

=> 3y -1 < 2y+3 => y <4  => y thuộc { -2;-3;-4.....}

5 tháng 12 2015

\(\frac{a}{b+c}>\frac{a}{a+b+c},\frac{b}{a+c}>\frac{b}{a+b+c},\frac{c}{a+b}>\frac{c}{a+b+c}\)

tổng lại sẽ>1

7 tháng 12 2015

ta có: 6^2+8^2=10^2

=> tam giác ABC vuông

Sabc=(6.8):2=48:2=24(cm)