3. CMR các biểu thức sau không phụ thuộc vào biến số:
a) \(\left(\frac{2ab}{a^2-b^2}+\frac{a-b}{2a+2b}\right).\frac{2a}{a+b}+\frac{b}{b-a}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=6-\frac{4}{x}+\frac{4}{x^2}=\left(\frac{4}{x^2}-\frac{2.2}{x}+1\right)+5=\left(\frac{2}{x}-1\right)^2+5\ge5\)
Min B =5 khi 2/x =1 => x =2
Vậy x =2
\(=\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left(x+6\right)\left(x+4\right)\left(x+2\right)\left(x+8\right)+16\)
\(=\left(x^2+10x+24\right)\left(x^2+10x+16\right)+16\)
\(=\left(t+8\right)t+16=\left(t+4\right)^2=\left(x^2+10x+20\right)^2\)
A+B = x2 -2x +1 +y2 +6y +9 + 1 = (x-1)2 + (y+3)2 +1 >0
Vì A+B >0 nên ít nhất một số là số dương .
Ta có: xyz=2006
Đặt tổng (đề) trên là A ( phân số thứ nhất tử là 2006x nhé)
=> \(A=\frac{xyzx}{xy+xyzx+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy\left(1+xz+z\right)}+\frac{y}{y\left(z+1+xz\right)}+\frac{z}{xz+z+1}\)
\(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}=\frac{xz+1+z}{xz+z+1}=1\)
=> A = 1 (đpcm).