cho tam giac ABC co AB = AC . M la trung diem BC tren tia doi MA lay diem D sao cho AM = MD
a cm tam giac abm= tam giac dcm
b ab song song dc
c am vuong goc bc
d tim dieu kien cua tam giac abc de goc adc = 45 do
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sau it nhat 2gio dong ho hai kim se nam doi dien voi nhau
\(giải:\)
\(-4x^2+5x+1\)
\(=-4x^2+5x-\frac{25}{16}+\frac{41}{16}\)
\(=\left(-4x^2+5x-\frac{25}{16}\right)+\frac{41}{16}\)
\(=-\left(4x^2-5x+\frac{25}{16}\right)+\frac{41}{16}\)
\(=-\left[\left(2x\right)^2-2.2x.\frac{5}{4}+\left(\frac{5}{4}\right)^2\right]+\frac{41}{16}\)
\(=-\left(2x-\frac{5}{4}\right)^2+\frac{41}{16}\le\frac{41}{16}\)
\(GTLN\) \(của\)\(-4x^2+5x+1=\frac{41}{16}\)\(đạt\)\(khi\)\(-\left(2x-\frac{5}{4}\right)^2=0\)
\(\Leftrightarrow2x-\frac{5}{4}=0\)
\(\Leftrightarrow2x=\frac{5}{4}\Leftrightarrow x=\frac{5}{8}\)
vậy gtln của -4x^2+5x+1 bằng 41/16 tại x=5/8
\(giải:\)
\(16x^2y-4xy^2-4x^3+x^2y\)
\(=\left(16x^2y-4xy^2\right)-\left(4x^3-x^2y\right)\)
\(=4xy\left(4x-y\right)-x^2\left(4x-y\right)\)
\(=\left(4x-y\right)\left(4xy-x^2\right)\)
\(=\left(4x-y\right)\left(\sqrt{4xy}-x\right)\left(\sqrt{4xy}+x\right)\)
\(=\left(4x-y\right)\left(2\sqrt{xy}-x\right)\left(2\sqrt{xy}+x\right)\)
\(\frac{x}{y}=\frac{10}{9}\Rightarrow\frac{x}{10}=\frac{y}{9}\) (1)
\(\frac{y}{z}=\frac{3}{4}\Rightarrow\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{3}.\frac{1}{3}=\frac{z}{4}.\frac{1}{3}\Rightarrow\frac{y}{9}=\frac{z}{12}\) (2)
Từ (1) ; (2) \(\Rightarrow\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)và \(x-y+z=78\)Áp dụng TC DTSBN ta có :
\(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)
\(\Rightarrow x=60;y=54;z=72\)
(Tự vẽ hình nhé!)
a) Xét \(\Delta ABM\)và \(\Delta DCM\)có:
\(\widehat{M_1}=\widehat{M_2}\)(Đối đỉnh)
\(BM=CM\left(gt\right)\)
\(AM=DM\left(gt\right)\)
\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)
b) Ta có: M là trung điểm BC
M là trung điểm AD
\(\Rightarrow\)Tứ giác ABCD là hình bình hành
\(\Rightarrow AB\)// \(CD\)
c) Xét \(\Delta ABC\)có: \(AB=AC\Rightarrow\Delta ABC\)cân tại \(A\)
\(\Rightarrow AM\)vừa là đường trung tuyến vừa là đường cao
\(\Rightarrow AM⊥BC\)
d) Câu này chưa hiểu => chưa giải