Cho a,b > o . CMR:
\(\left(a+b\right)^4\ge16ab\left(a-b\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(ab+\frac{a}{b}+\frac{b}{a}\)
\(=\frac{a^2b^2+a^2+b^2}{ab}\ge\frac{ab\cdot a+ab\cdot b+a\cdot b}{ab}=\frac{ab\left(a+b+1\right)}{ab}=a+b+1\)
Dấu "=" xảy ra khi: a = b = 1
P=\(\frac{3}{\sqrt{x}+3}\)
vì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+3\ge3\)
\(\Rightarrow P=\)\(\frac{3}{\sqrt{x}+3}\)\(\ge\frac{3}{3}=1\)
Vậy P\(\ge1\)
1) Với m = 1 thì ta có:
\(x^2-2\left(1-1\right)x+2\cdot1-3=0\)
\(\Leftrightarrow x^2-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
2) Ta có: \(\Delta^'=\left[-\left(m-1\right)\right]^2-\left(2m-3\right)\cdot1=m^2-2m+1-2m+3\)
\(=m^2-4m+4=\left(m-2\right)^2\ge0\left(\forall m\right)\)
=> PT luôn có nghiệm với mọi m
Theo hệ thức viet ta có:
\(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1+x_2-1=2m-3\\x_1x_2=2m-3\end{cases}}\)
\(\Rightarrow x_1+x_2-1=x_1x_2\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1=0\)
\(\left(\sqrt{45}-\sqrt{63}\right)\left(\sqrt{7}-\sqrt{5}\right)=\left(\sqrt{9.5}-\sqrt{9.7}\right)\left(\sqrt{7}-\sqrt{5}\right)\)
\(=\left(3\sqrt{5}-3\sqrt{7}\right)\left(\sqrt{7}-\sqrt{5}\right)=-3\left(\sqrt{5}-\sqrt{7}\right)^2\)
Ta có:
\(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+y}{8}+\frac{1+z}{8}\ge3\sqrt[3]{\frac{x^3}{\left(1+y\right)\left(1+z\right)}\cdot\frac{1+y}{8}\cdot\frac{1+z}{8}}=\frac{3}{4}x\)
Tương tự:
\(\frac{y^3}{\left(1+z\right)\left(1+x\right)}+\frac{1+z}{8}+\frac{1+x}{8}\ge\frac{3}{4}y\)
\(\frac{z^3}{\left(1+x\right)\left(1+y\right)}+\frac{1+x}{8}+\frac{1+y}{8}\ge\frac{3}{4}z\)
\(\Rightarrow VT+\frac{3}{4}+\frac{1}{4}\left(x+y+z\right)\ge\frac{3}{4}\left(x+y+z\right)\)
\(\Leftrightarrow VT\ge\frac{1}{2}\left(x+y+z\right)-\frac{3}{4}\ge\frac{1}{2}\cdot3\sqrt[3]{xyz}-\frac{3}{4}=\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)
Dấu "=" xảy ra khi: x = y = z = 1
ta có: (a+b)4\(\ge\)16ab(a-b)2
\(\Leftrightarrow\)a4 + 4ab3 + 4a3b + b4\(\ge\)16ab(a2 - 2ab + b2)
\(\Leftrightarrow\)a4 + 4ab3 + 4a3b + b4\(\ge\)16a3b - 32a2b2 + 16ab3
\(\Leftrightarrow\)a4 - 12a3b + 38a2b2 - 12ab3 + b4 \(\ge\)0
\(\Leftrightarrow\)(a2 - 6ab + b2)2 \(\ge\)0 (luôn đúng)Vậy\(\left(a+b\right)^4\ge16ab\left(a-b\right)^2\)
\(\Leftrightarrow a^4+4ab^3+6a^2b^2+4a^3b+b^4\ge16ab\left(a^2-2ab+b^2\right)\)
\(\Leftrightarrow a^4+4ab^3+6a^2b^2+4a^3b+b^4\ge16a^3b-32a^2b^2+16ab^3\)
\(\Leftrightarrow a^4-12a^3b+38a^2b^2-12ab^3+b^4\ge0\)
\(\Leftrightarrow\left(a^2\right)^2-\left(b^2\right)^2+\left(6ab\right)^2+2a^2b^2-2.6aba^2-2.6abb^2\ge0\)
\(\Leftrightarrow\left(a^2-6ab+b^2\right)^2\ge0\)( luôn đúng )
Vậy ....