mot cano xuoi dong tu A -> B dai 80km.luc ve nguoc dong tu B -> A het nhieu thoi gian hon thoi gian di xuoi la 30' . tinh van toc cua thuc cua cano biet van toc cua dong nuoc la 4km/h
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=\left(-2m\right)^2-4.\left(2m-3\right)\)
\(=4m^2-8m+12\)
\(\Delta'=m^{^2}-2m+3\)
\(=\left(m-1\right)^2+2\)
ĐKXĐ: x \(\ge\)1/2
Đặt: \(x+3=a\left(a>0\right)\)
\(\sqrt{2x-1}=b\) (b \(\ge\)0)
=> 3a + b2 = 3x + 9 + 2x - 1 = 5x + 8 => 5x - 1 = b2 + 3a - 9
Do đó, ta có: b2 + 3a - ab - 9 = 0
<=> (b - 3)(b + 3) - a(b - 3) = 0
<=> (b - 3)(b - a + 3) = 0
<=> \(\orbr{\begin{cases}b=3\\b-a+3=0\end{cases}}\)
Với b = 3=> \(\sqrt{2x-1}=3\)=> 2x - 1 = 9 => x = 5 (tm)
với b - a + 3 = 0 => \(\sqrt{2x-1}-x-3+3=0\)
<=> \(\sqrt{2x-1}=x\) (x \(\ge\)1/2)
<=> 2x - 1 = x2 <=> (x - 1)2 = 0 <=> x = 1 (tm)
Vậy S = {1; 5}
a3 + b3 \(\ge\frac{1}{4}\)
<=> (a + b)(a2 - ab + b2) \(\ge\frac{1}{4}\)
<=> a2 - ab + b2 \(\ge\frac{1}{4}\)
<=> 4a2 - 4ab + 4b2 \(\ge1\)
<=> 4a2 - 4a(1 - a) + 4(1 - a)2 \(\ge\)1
<=> 8a2 - 4a + 4(a2 - 2a + 1) \(\ge\)1
<=> 12a2 - 12a + 3 \(\ge\)0
<=> 3(4a2 - 4a + 1) \(\ge0\)
<=> (2a - 1)2 \(\ge\)0 (đúng)
Dấu "=" xảy ra <=> \(a=b=\frac{1}{2}\)
b) Vì \(a^3+b^3\ge\frac{1}{4}\Rightarrow\frac{1}{a^3+b^3}\ge4\)
Khi đó \(\frac{1}{a^3+b^3}+\frac{3}{ab}\ge16\)
<=> \(\frac{3}{ab}\ge12\)
<=> ab \(\ge\frac{1}{4}\)
<=> 4ab \(\ge1\)
<=> 4a(1 - a) \(\ge1\)
<=> (2a - 1)2 \(\ge0\)(đúng)
=> ĐPCM
Ta có: \(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\)
\(=\frac{x^3}{x\sqrt{1-x^2}}+\frac{y^3}{y\sqrt{1-y^2}}+\frac{z^3}{z\sqrt{1-z^2}}\)
\(\ge\frac{x^3}{\frac{x^2+1-x^2}{2}}+\frac{y^3}{\frac{y^2+1-y^2}{2}}+\frac{z^3}{\frac{z^2+1-z^2}{2}}\)
\(=2x^3+2y^3+2z^3=2\left(x^3+y^3+z^3\right)=2\cdot\frac{3\sqrt{2}}{4}=\frac{3\sqrt{2}}{2}\)
Dấu "=" xảy ra khi: \(x=y=z=\frac{1}{\sqrt{2}}\)
đk: \(x\ge-1\)
Ta có: \(2x=\left[\left(x+3\right)-\left(x+1\right)\right]x=\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(\sqrt{x+3}+\sqrt{x+1}\right)x\)
\(PT\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}-x\sqrt{x+3}-x\sqrt{x+1}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x+1}\right)\left[x\left(x-\sqrt{x+3}\right)-\left(x-\sqrt{x+3}\right)\sqrt{x+1}\right]=0\)
\(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x-\sqrt{x+1}\right)\left(x-\sqrt{x+3}\right)=0\)
Nếu \(\sqrt{x+3}-\sqrt{x+1}=0\Leftrightarrow\sqrt{x+3}=\sqrt{x+1}\)
\(\Leftrightarrow x+3=x+1\Leftrightarrow2=0\left(ktm\right)\)
Nếu \(x-\sqrt{x+1}=0\Leftrightarrow x=\sqrt{x+1}\left(x\ge0\right)\)
\(\Leftrightarrow x^2=x+1\Leftrightarrow x^2-x-1=0\Leftrightarrow\orbr{\begin{cases}x=\frac{1+\sqrt{5}}{2}\left(tm\right)\\x=\frac{1-\sqrt{5}}{2}\left(ktm\right)\end{cases}}\)
Nếu \(x-\sqrt{x+3}=0\Leftrightarrow x=\sqrt{x+3}\left(x\ge0\right)\)
\(\Leftrightarrow x^2=x+3\Leftrightarrow x^2-x-3=0\Leftrightarrow\orbr{\begin{cases}x=\frac{1+\sqrt{13}}{2}\left(tm\right)\\x=\frac{1-\sqrt{13}}{2}\left(ktm\right)\end{cases}}\)
Vậy \(x\in\left\{\frac{1+\sqrt{5}}{2};\frac{1+\sqrt{13}}{2}\right\}\)
Ta có: \(\left(a+\sqrt{a^2+9}\right)\left(b+\sqrt{b^2+9}\right)=9\)
\(\Leftrightarrow\frac{\left(a-\sqrt{a^2+9}\right)\left(a+\sqrt{a^2+9}\right)\left(b+\sqrt{b^2+9}\right)}{a-\sqrt{a^2+9}}=9\)
\(\Leftrightarrow\frac{-9\left(b+\sqrt{b^2+9}\right)}{a-\sqrt{a^2+9}}=9\)
\(\Rightarrow b+\sqrt{b^2+9}=\sqrt{a^2+9}-a\)
Tương tự chỉ ra được: \(a+\sqrt{a^2+9}=\sqrt{b^2+9}-b\)
Cộng vế 2 PT trên lại ta được:
\(a+b+\sqrt{a^2+9}+\sqrt{b^2+9}=\sqrt{a^2+9}+\sqrt{b^2+9}-a-b\)
\(\Leftrightarrow2\left(a+b\right)=0\Rightarrow a=-b\)
Thay vào M ta được:
\(M=2a^4-a^4-6a^2+8a^2-10a+2a+2026\)
\(M=a^4+2a^2-8a+2026\)
\(M=\left(a^4+2a^2-8a+5\right)+2021\)
\(M=\left[\left(a^4-a^3\right)+\left(a^3-a^2\right)+\left(3a^2-3a\right)-\left(5a-5\right)\right]+2021\)
\(M=\left(a-1\right)\left(a^3+a^2+3a-5\right)+2021\)
\(M=\left(a-1\right)^2\left(a^2+2a+5\right)+2021\)\(\ge0+2021=2021\)
Dấu "=" xảy ra khi: a = 1 => b = -1
Vậy Min(M) = 2021 khi a = 1 và b = -1
a. Xét (O) , có:
CD \(\perp\)AB = {H}
=> \(\widehat{CHA}=90^o\Rightarrow\widehat{CHE}=90^o\)
Có: \(\widehat{CMD}\)là góc nội tiếp chắn nửa đường tròn đường kính CD
=> \(\widehat{CMD}=90^o\Rightarrow\widehat{CME}=90^o\)
Xét tứ giác CMEH, có:
\(\widehat{CME}+\widehat{CHE}=90^o+90^o=180^o\)
2 góc \(\widehat{CME}\)và \(\widehat{CHE}\)là 2 góc đối nhau
=> CMEH là tứ giác nội tiếp (đpcm)
Câu a: Có góc CHE=90 độ (vì CD\(\perp AB\) tại H)
Góc CMD =90 độ(góc nt chắn nửa đt)
Mà góc CHE và góc CMD ở vị trí đối nhau
⇒ Tứ giác CMEH nội tiếp
Câu b:
Xét \(\Delta NACva\Delta NMB\) có :
Góc N chung
Góc NCA = góc NBM (cùng chắn cung MA)
⇒ \(\Delta NAC\) đồng dạng \(\Delta NBM\) (góc góc)
⇒\(\dfrac{NM}{NA}\)=\(\dfrac{NB}{NC}\)⇔NM.NC=NA.NB
Câu c:
Có góc PMA=90 độ ( góc nt chắn nửa đt)→PM\(\perp\)AK
Mà IK\(\perp\)AK
⇒IK song song với MP (từ vuông góc đến song song
Gọi vận tốc thực của cano là x( km/h) ĐK: \(x>4\)
Ta có: \(\hept{\begin{cases}V_{xuoidong}=x+4\left(km/h\right)\\V_{nguocdong}=x-4\left(km/h\right)\end{cases}}\)
Thời gian ca nô đi xuôi dòng là \(\frac{80}{x+4}\left(h\right)\)
Thời gian ca nô đi ngược dòng là\(\frac{80}{x-4}\left(h\right)\)
Theo bài ra ta có pt sau : \(\frac{80}{x+4}=\frac{80}{x-4}-\frac{1}{2}\)
\(\Leftrightarrow80\left(\frac{1}{x+4}-\frac{1}{x-4}\right)=\frac{-1}{2}\)
\(\Leftrightarrow\frac{-8}{x^2-16}=\frac{-1}{160}\)
\(\Rightarrow x^2-16=1280\)
\(\Leftrightarrow x^2=1296\)
\(\Leftrightarrow\orbr{\begin{cases}x=36\left(tm\right)\\x=-36\left(loai\right)\end{cases}}\)
Vậy vận tốc thực của ca nô là 36km/h
"Ara-ara"
thank~you~