Chứng minh rằng \(\forall\) STN n ta có:
a) \(\left(7^n+1\right).\left(7^n+2\right)⋮3\)
b) \(n^2+n+6⋮̸4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các P/S đó > 3 nhé#
Kí hiệu # : nhận biết đây là tips, câu hỏi, câu trl của riêng mình, tuyệt đối ko copy dưới mọi hình thức. Trừ khi các bn đc sự cho phép của mik^^
>3 nhé
#Ko dựa trên căn bản kĩ thuật nào nên có thể có sai sót mong bn bỏ qua
Bài 10:
Số lẻ đầu tiên trong 21 số lẻ liên tiếp đầu tiên là: 1
Số lẻ cuối cùng trong 21 số lẻ liên tiếp đầu tiên là: $2.21-1=41$
Tổng của 21 số lẻ liên tiếp đầu tiên là:
$(41+1)\times 21:2=441$
Bài 11:
a.
Số hạng đầu tiên: $10=5.1+5$
Số hạng T2: $15=5.2+5$
Số hạng T3: $20=5.3+5$
.....
Số hạng thứ 19 là: $5.19+5=100$
b.
Ta thấy dãy trên là 1 dãy cách đều với khoảng cách là 2.
Gọi số hạng đầu tiên là $x$. Ta có:
$(56-x):2+1=25$
$(56-x):2=24$
$56-x=24\times 2=48$
$x=56-48=8$
Vậy số hạng đầu tiên là $8$.
Mk bt lm câu b thôi ý bn thông cảm haa
Ta có :
A = 1 + 7 + \(7^2\)+\(7^3\)+...+ \(7^{2017}\)
7A = 7 + \(7^2\)+\(7^3\)+\(7^4\)+...+ \(7^{2018}\)
=> 7A - A = ( 7 + \(7^2\)+\(7^3\)+\(7^4\)+...+ \(7^{2018}\) ) - ( 1 + 7 + \(7^2\)+\(7^3\)+...+ \(7^{2017}\) )
=> 6A = \(7^{2018}\) - 1
=> A = \(\dfrac{7^{2018}-1}{6}\)
Vậy A = \(\dfrac{7^{2018}-1}{6}\)
câu b là n^2 + n + 6 không chia hết cho 4
Chắc vậy