K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
10 tháng 6 2021

\(x^2-1+\sqrt{143}=a\Leftrightarrow x^2-1=a-\sqrt{143}\)

\(\frac{1}{x^2-1}-\sqrt{143}=\frac{1}{a-\sqrt{143}}-\sqrt{143}=\frac{a+\sqrt{143}}{a^2-143}-\sqrt{143}\)

\(=\frac{a}{a^2-143}+\frac{\sqrt{143}}{a^2-143}-\sqrt{143}\)

Để \(\frac{1}{x^2-1}-\sqrt{143}\)là số nguyên thì \(\frac{\sqrt{143}}{a^2-143}-\sqrt{143}\)hữu tỉ suy ra \(\frac{1}{a^2-143}-1=0\Leftrightarrow a=\pm12\).

Từ đây suy ra giá trị của \(x\)

10 tháng 6 2021

giả sử \(x=\left(\sqrt{2}+1\right)^2=3+2\sqrt{2}\) là một nghiệm của pt \(ax^2+bx+c=0\)

\(\Leftrightarrow a\left(3+2\sqrt{2}\right)^2+b\left(3+2\sqrt{2}\right)+c=0\)

\(\Leftrightarrow\left(17a+3b+c\right)+2\left(6a+b\right)\sqrt{2}=0\)

Nếu \(6a+b\ne0\Rightarrow\sqrt{2}=-\frac{17a+3b+c}{2\left(6a+b\right)}\inℚ\) (vô lý)

\(\Rightarrow17a+3b+c=6a+b=0\)

\(\Rightarrow\hept{\begin{cases}b=-6a\\c=a\end{cases}}\)

Thay b và c vào pt đã cho ta được: \(\left(x^2-6x+1\right)\left(x^2-6x+1\right)=0\)

pt này có hai nghiệm là: \(\hept{\begin{cases}x=3+2\sqrt{2}\\x=3-2\sqrt{2}\end{cases}}\)

10 tháng 6 2021

Lần lượt xét các giá trị tự nhiên của n:

\(n=0\Rightarrow y^2=4\Rightarrow y=\pm2\)

\(n=1\Rightarrow y^2=5\)=> không có nghiệm nguyên

\(x\ge2\Rightarrow2^n⋮4\), do đó vế trái chia 4 dư 3, còn y lẻ nên vế phải chia 4 dư 1 => Mâu thuẫn

Vậy n=0 , \(y=\pm2\)

10 tháng 6 2021

Đặt \(A=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)

\(A\sqrt{2}=\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)

\(\Rightarrow A=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)

10 tháng 6 2021

Kq là 4

10 tháng 6 2021

\(y=\frac{\frac{3}{x-1}+2}{\sqrt{x-1}}\)

ĐKXĐ : \(\sqrt{x-1}>0\Leftrightarrow x-1>0\Leftrightarrow x>1\)