Giải phương trình:
\(\left(3x+1\right)^3+\left(x-7\right)^3=8\left(2x-3\right)^{^{ }3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=a ( a^3+1) (a^3-1 )
= a( a+1)(a^2-a+1)(a-1)(a^2+a+1)
=a(a-1)(a+1)(a^2-a+1)(a^2+a+1)
=a(a-1)(a+1)(a^2-a+1-7)(a^2+a+1)
+7a(a-1)(a+1)(a^2+a-1)
=a(a-1)(a+1)(a^2-a-6)(a^2+a+1-7)
+7a(a-1)(a+1)(a^2+a-1)
+7a(a-1)(a+1)(a^2-a-6)
Ta có: 7a(a-1)(a+1)(a^2+a-1)+7a(a-1)(a+1)(a^2-a-6) chia hết cho 7( cùng có nhân tử 7)
Ta cần chứng minh: a(a-1)(a+1)(a^2-a-6)(a^2+a+1-7) chia hết cho 7
Ta có: a(a-1)(a+1)(a^2-a-6)(a^2+a+1-7)
=a(a-1)(a+1) [(a+2)(a-3) [(a-2)(a+3)]
=(a-3)(a-2)(a-1) a(a+1)(a+2)(a+3) là tích của 7 số nguyên liên tiếp nên chia hết cho 7
Em chịu vì em học lớp 6 mà nhưng anh hay chị gì đó có thể kết bạn với em không?
Ta có hình như sau :
giải :
Ta có:
= mà AB' = x + h nên
= <=> a'x = ax + ah
<=> a'x - ax = ah
<=> x(a' - a) = ah
x=
Vậy khoảng cách AB bằng
Ta có hình như sau :
Giải
Ta có:
= mà AB' = x + h nên
= <=> a'x = ax + ah
<=> a'x - ax = ah
<=> x(a' - a) = ah
x=
Vậy khoảng cách AB bằng
Ta có:
\(\frac{a^2}{b^2}+1\ge2.\frac{a}{b}\)
\(\frac{b^2}{c^2}+1\ge2.\frac{b}{c}\)
\(\frac{c^2}{a^2}+1\ge2.\frac{c}{a}\)
Cộng vế theo vế ta được
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}+3\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)
\(\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-3\)
\(\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\sqrt{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}-3=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
Dấu = xảy ra khi a = b = c
Ta co: \(\frac{a^2}{b^2}\ge\frac{a}{b}\); \(\frac{b^2}{c^2}\ge\frac{b}{c}\);\(\frac{c^2}{a^2}\ge\frac{c}{a}\)\(\Rightarrow dpcm\)
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+2008=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+2008\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)\)
đặt \(x^2+10x+21=a\)
ta có \(\left(a-5\right)\left(a+3\right)=a^2-2a-15+2008=a\left(a-2\right)+1993\)
ta có a(a-2) chia hết cho a hay x^2+10x+21
số dư là 1993
pt <=> \(\left(3x+1+x-7\right)\left(\left(3x+1\right)^2+\left(x-7\right)^2\right)=\left(4x-6\right)^3\)
\(\Leftrightarrow\left(4x-6\right)\left(9x^2+6x+1+x^2-14x+49-\left(4x-6\right)^2\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(10x^2-8x+50-16x^2+48x-36\right)=0\)
\(\orbr{\begin{cases}2x-3=0\\-6x^2+40x+14=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\-3x^2+20x+7=0\left(\cdot\right)\end{cases}}\)
pt(*) <=> (3x-1)(x+7)=0 <=> \(\orbr{\begin{cases}x=\frac{1}{3}\\x=-7\end{cases}}\)
Vậy x=...