Rút gọn biểu thức sau:
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\sqrt{3}+1\right)\left(\sqrt{2}-\sqrt{2+\sqrt{3}}\right)\)
\(\sqrt{2}A=\left(\sqrt{3}+1\right)\left(2-\sqrt{4+\sqrt{3}}\right)\)
\(\sqrt{2}A=\left(\sqrt{3}+1\right)\left(2-\sqrt{\left(\sqrt{3}+1\right)^2}\right)\)
\(\sqrt{2}A=\left(\sqrt{3}+1\right)\left(2-\sqrt{3}-1\right)\)
\(\sqrt{2}A=\left(\sqrt{3}+1\right)\left(1-\sqrt{3}\right)\)
\(\sqrt{2}A=1-3\)
\(A=-\sqrt{2}\)
sửa đề : \(\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
\(=\sqrt{5^2+2.5\sqrt{2}+2}-\sqrt{4^2+2.4\sqrt{2}+2}\)
\(=\sqrt{\left(5+\sqrt{2}\right)^2}-\sqrt{\left(4+\sqrt{2}\right)^2}=\left|5+\sqrt{2}\right|-\left|4+\sqrt{2}\right|\)
\(=5+\sqrt{2}-4-\sqrt{2}=1\)
=1 nha
t.i.c.k mình nha
bạn nào 10sp gúp mình đi
\(\Rightarrow2y=x^3+3x\)
\(\Rightarrow2I=2x^4+x^3\left(x^3+3x\right)+6x^2+x\left(x^3+3x\right)-\left(x^3+3x\right)^2+2\)
\(=2x^4+x^6+3x^4+6x^2+x^4+3x^2-\left(x^6+6x^4+9x^2\right)+2\)
\(=2\)
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{2}\sqrt{3}+\sqrt{2}\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)