Cho xyz=1.Tính M=x/xy+x+1 + y/yz+y+1 + z/zx+z+1
giúp mik vs ạ mik cần luôn mik cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2,5+3,2+2,7
=5,7+2,7
=8,4
\(\left[-1,5\right]-\dfrac{1}{5}=-\dfrac{3}{2}-\dfrac{1}{5}=-\dfrac{15}{10}-\dfrac{2}{10}=-\dfrac{17}{10}\)
`#3107.101107`
`2,5 + 3,2 + 2,7`
`= 5,7 + 2,7`
`= 8,4`
____
$-1,5 - \dfrac{1}{5}$
`= -1,5 - 0,2`
`= -1,7`
Ta có: \(\dfrac{y+z+2}{x}=\dfrac{x+z+3}{y}=\dfrac{x+y-5}{z}=\dfrac{1}{x+y+z}\) (\(x,y,z\ne0\))
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{y+z+2}{x}=\dfrac{x+z+3}{y}=\dfrac{x+y-5}{z}=\dfrac{1}{x+y+z}\)
\(=\dfrac{y+z+2+x+z+3+x+y-5}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\left\{{}\begin{matrix}y+z+2=2x\\x+z+3=2y\\x+y-5=2z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+y+z+2=3x\\x+y+z+3=3y\\x+y+z-5=3z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x=\dfrac{1}{2}+2=\dfrac{5}{2}\\3y=\dfrac{1}{2}+3=\dfrac{7}{2}\\3z=\dfrac{1}{2}-5=-\dfrac{9}{2}\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{6}\left(tm\right)\\y=\dfrac{7}{6}\left(tm\right)\\z=-\dfrac{3}{2}\left(tm\right)\end{matrix}\right.\)
#$\mathtt{Toru}$
Bài 7: Kẻ CF//AB//DE(CF,AB cùng nằm trên nửa mặt phẳng bờ AC)
CF//AB
=>\(\widehat{BAC}+\widehat{ACF}=180^0\)
CF//DE
=>\(\widehat{FCD}+\widehat{CDE}=180^0\)
\(\widehat{BAC}+\widehat{ACF}+\widehat{FCD}+\widehat{CDE}\)
\(=180^0+180^0=360^0\)
=>\(\widehat{BAC}+\widehat{ACD}+\widehat{CDE}=360^0\)
Bài 8:
Qua C, kẻ FH//AB//DE
FC//AB
=>\(\widehat{ABC}+\widehat{FCB}=180^0\)
=>\(\widehat{FCB}=68^0\)
Ta có: CH//DE
=>\(\widehat{CDE}+\widehat{DCH}=180^0\)
=>\(\widehat{DCH}=180^0-133^0=47^0\)
Ta có: \(\widehat{BCF}+\widehat{BCD}+\widehat{HCD}=180^0\)
=>\(\widehat{BCD}+47^0+68^0=180^0\)
=>\(\widehat{BCD}=65^0\)
a) Để `x/7` là số hữu tỉ thì \(x\in Z\)
b) Để `5/x` là số hữu tỉ thì \(x\in Z,x\ne0\)
c) Để `-5/(2x)` là số hữu tỉ thì \(2x\in Z\Rightarrow x\in Z,x\ne0\)
*chứng minh AB = AE
xét tam giác vuông ABD và tam giác vuông AED, có:
góc BAD = góc EAD (vì A là đường phân giác của tam giác ABC)
AD là cạnh chung
=> tam giác ABD = tam giác AED (ch-gn)
=> AB = AE (2 cạnh tương ứng)
*chứng minh DQ = CD
xét tam giác AEQ và tam giác ABC , có:
góc AEQ = góc ABC (= 90 độ)
AB = AE (câu a)
góc A là góc chung
=> tam giác AEQ = tam giác ABC (c-g-c)
=> QE = BC (1)
ta có: DC = BC - BD; DQ = QE - DE (2)
lại có: DB = DE (vì tam giác ABD = tam giác AED) (3)
=> TỪ (1) (2) (3) => DC = DQ
*chứng minh AB = AE
xét tam giác vuông ABD và tam giác vuông AED, có:
góc BAD = góc EAD (vì A là đường phân giác của tam giác ABC)
AD là cạnh chung
=> tam giác ABD = tam giác AED (ch-gn)
=> AB = AE (2 cạnh tương ứng)
*chứng minh DQ = CD
xét tam giác AEQ và tam giác ABC , có:
góc AEQ = góc ABC (= 90 độ)
AB = AE (câu a)
góc A là góc chung
=> tam giác AEQ = tam giác ABC (c-g-c)
=> QE = BC (1)
ta có: DC = BC - BD; DQ = QE - DE (2)
lại có: DB = DE (vì tam giác ABD = tam giác AED) (3)
=> TỪ (1) (2) (3) => DC = DQ
Câu 11:
\(C=\dfrac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}=\dfrac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}\\ =\dfrac{\left|x-2017\right|+2019}{\left|x-2017\right|+2019}-\dfrac{1}{\left|x-2017\right|+2019}\\ =1-\dfrac{1}{\left|x-2017\right|+2019}\)
Ta có: \(\left|x-2017\right|\ge0\forall x\Rightarrow\left|x-2017\right|+2019\ge2019\forall x\)
\(\Rightarrow\dfrac{1}{\left|x-2017\right|+2019}\le\dfrac{1}{2019}\forall x\)
\(\Rightarrow C=1-\dfrac{1}{\left|x-2017\right|+2018}\ge1-\dfrac{1}{2019}=\dfrac{2018}{2019}\)
Dấu "=" xảy ra khi: \(x-2017=0\Rightarrow x=2017\)
vậy: ...
cảm ơn gì vậy bn
?