Cho tam giác ABC ABC, góc A < 90o. Trên nửa mặt phẳng bờ AB có chứa điểm C, cẽ AD vuông góc AB. Trên nửa mặt phẳng bờ AC có chứa điểm B vẽ AE vuông góc với AC và AE = AC. kẻ AH vuông góc ED (H thuộc ED). Chứng minh AH đi qua trung điểm M của cạnh BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia đối của tia AM, lấy điểm I sao cho MI = MA. Khi đó ta có thể suy ra \(\Delta AMC=\Delta IMB\left(c-g-c\right)\)
\(\Rightarrow\widehat{MCA}=\widehat{MBI}\) hay BI // AC và BI = AC.
Gọi N là giao điểm của BI và AE. Do AE vuông góc với AC nên AE cũng vuông góc với BI. Vậy thì \(\widehat{AKI}=90^o\)
Ta thấy hai góc DAE và ABI có \(DA\perp AB;AE\perp BI\) nên \(\widehat{DAE}=\widehat{ABI}\)
Vậy thì \(\Delta DAE=\Delta ABI\left(c-g-c\right)\)
\(\Rightarrow\widehat{DEA}=\widehat{AIB}\)
Kéo dài NI cắt DE tại J, AI cắt DE tại F.
Xét tam giác vuông NEJ ta có \(\widehat{NJE}+\widehat{JEN}=90^o\)
Vậy nên \(\widehat{NJE}+\widehat{JIF}=90^o\Rightarrow\widehat{JFI}=90^o\)
Hay \(AM\perp DE.\)
= 2^19 x (3^3)^3 + 3 x 5 x (2^2)^9 x (3^2)^4 / 2^9 x 3^9 x 2^10 + (2^2)^10 x 3^10
= 2^19 x 3^9 + 3^9 x 2^18 x 5 / 2^19 x 3^9+2^20 x 3^10
= 3^9 x 2^18 x (2+5) / 3^9 x 2^19 x (1 + 2 x 3)
= 3^9 x 2^18 x 7 / 3^9 x 2^19 x 7 = 1/2
k mk nha
a/2b+c=b/2c+a=c/2a+b
=>2b+c/a=2c+a/b=2a+b/c ( vì a,b,c > 0 )
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
2b+c/a=2c+a/b=2a+b/c = 2b+c+2c+a+2a+b/a+b+c = 3
=> 2b+c/a+2c+a/b+2a+b/c = 3+3+3 = 9
k mk nha
Để \(C=\frac{x+2}{|x|}\)lớn nhất
\(\Leftrightarrow\)\(C=\frac{x+2}{\left|x\right|}\in Z\)
\(\Leftrightarrow\)\(x=1\)
\(\Leftrightarrow\)GTLN của C là 3 .
Cách khác :
Xét các trường hợp :
Xét \(x\le-2\) thì \(C\le1\)
Xét \(x=1\)thì \(C=1\)
Xét \(x\ge1\). Khi đó \(C=\frac{x+2}{x}=1+\frac{2}{x}\). Ta thấy C lớn nhất \(\Leftrightarrow\frac{2}{x}\)lớn nhất . Chú ý rằng x là số nguyên dương nên \(\frac{2}{x}\)lớn nhất \(\Leftrightarrow\)x nhỏ nhất,tức là x = 1, khi đó C = 3
So sánh các trường hợp trên ta suy ra : GTLN của C bằng 3 khi và chỉ khi x = 1
Câu hỏi của Nguyễn Đức Hiếu - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo bài tương tự tại đây nhé.
Chị Hoàng Thị Thu Huyền ơi, chị nhầm bài roài ạ. Nó ko tham khảo đc đâu. Bài chị bảo dễ hơn bài này nhiều. Nếu chị thấy dễ mong chị đại nhân dành một chút tg vàng bạc của mình giảng cho chúng tiểu nhân em hiểu ạ. Em chân thành cảm ơn ạ