cho tam giác ABC có ^BAC=120 độ. Trên tia phăn giác của góc BAC lấy điểm D sao cho AD=AB. Trên tia đối của tia AB lấy điểm E sao cho AE=AC . Nối DE a) Chứng minh tam giác ABC= tam giác ADE b)tia phân giác của ^EAC cắt EC tại M. Chứng minh đường thẳng AM là đường trung trực của đoạn thẳng EC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy rằng y # 0 (để cho x : y là số xác định)
Hơn nữa x # 0, vì nếu x = 0 thì xy = x : y = 0 nhưng x - y # 0 (vì y # 0)
Vì xy = x : y suy ra y^2 = 1 ---> y = 1 hoặc y = -1
+ Nếu y = 1 ---> x - 1 = x.1 (vô nghiệm nên tr/hợp này loại)
+ Nếu y = -1 ---> x + 1 = - x ---> 2x = -1 ---> x = -1/2 (nhận)
Vậy x = -1/2 ; y = -1.
:)
Vì AB = AC (gt) => tam giác ABC là tam giác cân tại A .
Mà trong tam giác cân, đường phân giác cũng là đường trung trực => BE = EC
Xét tam giác ABE và tam giác ACE:
AB = AC (gt)
BE = EC (cmt)
AE chung
=> tam giác ABE = tam giác ACE (c.c.c)
b) Ta lại có: trong tam giác cân, đường phân giác cũng là đường cao của tam giác đó. => AE vuông góc với BC tại E
Xét tam giác ABC:
BE = EC (ý a)
AE vuông góc với BC tại E. (cmt)
=> AE là đường trung trực của BC
A=n!+1 => A chia cho tất cả các số từ 2->n dư 1 hay A không có ước số trong khoảng từ 2->n.
Vì B là ước của A => B cũng không có ước từ 2->n vì nếu B có ước từ 2->n thì nó cũng là ước của A => B là số nguyên tố.