Một mảnh đất HCN có chu vi bằng 70m và tỉ số giữa 2 cạnh của nó bằng 3/4. Tính diện tích mảnh đất này
Trả lời nhanh nha!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
3n+2−2n+2+3n−2n3n+2−2n+2+3n−2n =3n.32−2n.22+3n−2n3n.32−2n.22+3n−2n
=3n.9−2n.4+3n−2n3n.9−2n.4+3n−2n =3n.(9+1)−2n.(4+1)3n.(9+1)−2n.(4+1)
=3n.10−2n.5=3n.10−2n−1.2.53n.10−2n.5=3n.10−2n−1.2.5 = 3n.10−2n−1.103n.10−2n−1.10
=10.(3n−2n−1)⋮1010.(3n−2n−1)⋮10
⇒3n+2−2n+2+3n−2n⋮10⇒3n+2−2n+2+3n−2n⋮10 (ĐPCM)
TK NHA
3n + 2−2n + 2 + 3n−2n3n + 2−2n + 2 + 3n−2n =3n.32−2n.22 + 3n−2n3n.32−2n.22 + 3n−2n
=3n.9−2n.4 + 3n−2n3n.9−2n.4 + 3n−2n =3n.(9 + 1)−2n.(4 + 1)3n.(9 + 1)−2n.(4 + 1)
=3n.10−2n.5 = 3n.10−2n−1.2.53n.10−2n.5 = 3n.10−2n−1.2.5 = 3n.10−2n−1.103n.10−2n−1.10
=10.(3n−2n−1)⋮1010.(3n−2n−1)⋮10
⇒3n + 2−2n + 2 + 3n−2n⋮10⇒3n + 2−2n + 2 + 3n−2n⋮10 (ĐPCM)
TK NHA. chúc bn hok tốt @_@
Proed_Game_Toàn không biết thì đừng Spam.
Giải:
\(A=\frac{2}{3^2}+\frac{2}{5^2}+\frac{2}{7^2}+\frac{2}{9^2}+...+\frac{2}{2011^2}\)
\(2A=2.\left(\frac{2}{3^2}+\frac{2}{5^2}+\frac{2}{7^2}+\frac{2}{9^9}+...+\frac{2}{2011^2}\right)\)
\(2A=\left(1-\frac{2}{3^2}\right)+\left(1-\frac{2}{5^2}\right)+\left(1-\frac{2}{7^2}\right)+\left(1-\frac{2}{9^2}\right)+...+\left(1-\frac{2}{2011^2}\right)\)
...
P/s: Tới đây là dễ rùi, kết quả tự tình và tự CM nhé!
Câu trả lời hay nhất: P = x⁴ + 2x³ + 3x² + 2x + 1
. .= (x⁴ + x³ + x²) + (x³ + x² + x) + (x² + x + 1)
. .= x²(x² + x + 1) + x(x² + x + 1) + (x² + x + 1)
. .= (x² + x + 1)(x² + x + 1)
. .= (x² + x + 1)²
P nhỏ nhất khi x² + x + 1 nhỏ nhất
x² + x + 1 = (x + 1/2)² + 3/4 ≥ 3/4;
đẳng thức xảy ra khi x = -1/2
Do đó
P ≥ (3/4)²
P ≥ 9/16
GTNN của P là 9/16 và điều này xảy ra khi x = -1/2
Nối K với E.
Góc BKC = BKE + EKC
+) Trong tam giác CKE có: EKC = 180o - (KEC + ECK)
+) Trong tam giác BEK có: BKE = 180o - (KEB + EBK)
=> góc BKC = 360o - (KEC + ECK + KEB + EBK) (1)
Ta có: KEC + KEB = AEC + KEA + KEB = = AEC + 180o (2)
góc ECK + EBK = ACB2 +ABD2 =180o−(BAC+AEC)+180o−(BDC+DEB)2
=> góc ECK + EBK = 360o−(BAC+BDC)−2.AEC2 =180o−AEC−BAC+BDC2 (góc AEC = DEB vì đối đỉnh) (3)
Thay (2)(3) vào (1) ta được góc BKC = 360o−(360o−BAC+BDC2 )=BAC+BDC2
Sửa đề : S= -1/2-1/3-1/4-.....-1/20 + 3/2 + 4/3 + 5/4 + ... + 21/20 . Tính S
\(S=\left(\frac{3}{2}-\frac{1}{2}\right)+\left(\frac{4}{3}-\frac{1}{3}\right)+\left(\frac{5}{4}-\frac{1}{4}\right)+...+\left(\frac{21}{20}-\frac{1}{20}\right)\)
\(S=1+1+1+...+1\)( 20 số 1 )
\(S=20\)
( x - 2 )2012 + | y2 - 9 |2014 = 0 ( 1 )
vì ( x - 2 )2012 \(\ge\)0 ; | y2 - 9 |2014 \(\ge\)0 ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\hept{\begin{cases}\left(x-2\right)^{2012}=0\\\left|y^2-9\right|^{2014}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\y^2-9=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Vậy x = 2 ; y = 3
còn lại tương tự
Vì (x -2 )2012> hoặc =0 mà |y2 -9 |2014 > hoặc =0 nên để (x -2 )2012 + | y2 -9 |2014 =0 thì (x-2)2012 =0 và |y2 -9| =0
=>( x-2)=0 và y2-9=0
=>x=0 và y2=9
=>x=o và y=3 hoặc x= -3
gọi chiều dài là a ; chiều rộng là b
Theo bài ra : ( a + b ) . 2 = 70 \(\Rightarrow\)a + b = 35
và \(\frac{b}{a}=\frac{3}{4}\)\(\Rightarrow\)\(\frac{b}{3}=\frac{a}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{b}{3}=\frac{a}{4}=\frac{a+b}{4+3}=\frac{35}{7}=5\)
\(\Rightarrow b=3.5=15;c=5.4=20\)
Diện tích mảnh đất là :
15 . 20 = 300 ( m2 )
Vậy ...
15 và 20