Cho hình vuông ABCD. M là điểm chuyển động trên đưởng chéo BD. E, F lần lượt là hình chiếu của M trên AB và AD . Chứng minh rằng:
a) Chi vi AEMF không đổi
b) Đường thẳng đi qua M và vuông góc với EF luôn đi qua một điểm cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2(X^2-XY)=1(X^2-XY)
lấy đâu ra 1 vậy bạn
Ta có :
\(a^2+b^2+\left(a+b\right)^2=a^2+b^2+\left(a^2+b^2+2ab\right)\)
\(=2\left(a^2+b^2+ab\right)=2.7=14\)
\(a^4+b^4+\left(a+b\right)^4=a^4+b^4+a^4+C_4^1a^3b+C_4^2a^2b^2+C_4^3ab^3+b^4\)
\(=2a^4+2b^4+4a^3b+6a^2b^2+4ab^3\)
\(=2\left(a^4+b^4+3a^2b^2+2ab^3+2a^3b\right)\)
\(=2\left[\left(a^2\right)^2+\left(b^2\right)^2+\left(ab\right)^2+2a^2b^2+2\left(ab\right)b^2+2\left(ab\right)a^2\right]\)
\(=2.\left(a^2+b^2+ab\right)^2=2.7^2=98\)
\(\Rightarrow M=\frac{a^2+b^2+\left(a+b\right)^2}{a^4+b^4+\left(a+b\right)^4}=\frac{14}{98}=\frac{1}{7}\)
Vậy ...
M = a2 + b2 + (a+b)2 = a2 + b2 + a2+ 2ab + b2 = 2a2 + 2b2 + 2ab = 2(a2 + ab+ b2) = 2.7 = 14
M = a2 + b2 + (a+b)2 = 2a2 + 2b2 + 2ab = 2(a2 + ab+ b2) =14
Tương tự với a4 + b4 + (a+b)4
Ta có: \(A=x^6-2x^4+x^3+x^2-x\)
\(\Rightarrow A=\left(x^6-2x^4+x^2\right)+\left(x^3-x\right)\)
\(\Rightarrow A=\left[\left(x^3\right)^2-2x^3x+x^2\right]+\left(x^3-x\right)\)
\(\Rightarrow A=\left(x^3-x\right)^2+\left(x^3-x\right)\)\(\left(1\right)\)
Thay \(x^3-x=8\)vào \(\left(1\right)\)ta có:
\(\Rightarrow A=8^2+8=72\)
Vậy \(A=72\)
A=x^6-2x^4+x^2+(x^3-x)
=x^6-x^4-x^4+x^2+(x^3-x)
=x^3(x^3-x)-x(x^3-x)+(x^3-x)
=(x^3-x)(x^3-x)+(x^3-x)=8.8+8=8*9=72