K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 10

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(F=\frac{x^4}{x^2\sqrt{y}}+\frac{y^4}{y^2\sqrt{x}}\geq \frac{(x^2+y^2)^2}{x^2\sqrt{y}+y^2\sqrt{x}}=\frac{4}{y^2\sqrt{x}+x^2\sqrt{y}}\)

Áp dụng BĐT Bunhiacopxky kết hợp AM-GM:

$(y^2\sqrt{x}+x^2\sqrt{y})^2\leq (y^2+x^2)(y^2x+x^2y)=2xy(x+y)$
$\leq (x^2+y^2)\sqrt{2(x^2+y^2)}=2\sqrt{2.2}=4$

$\Rightarrow y^2\sqrt{x}+x^2\sqrt{y}\leq 2$

$\Rightarrow F\geq \frac{4}{y^2\sqrt{x}+x^2\sqrt{x}}\geq \frac{4}{2}=2$
Vậy $F_{\min}=2$. Giá trị này đạt tại $x=y=1$

AH
Akai Haruma
Giáo viên
25 tháng 10

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(F=\frac{x^4}{x^2\sqrt{y}}+\frac{y^4}{y^2\sqrt{x}}\geq \frac{(x^2+y^2)^2}{x^2\sqrt{y}+y^2\sqrt{x}}=\frac{4}{y^2\sqrt{x}+x^2\sqrt{y}}\)

Áp dụng BĐT Bunhiacopxky kết hợp AM-GM:

$(y^2\sqrt{x}+x^2\sqrt{y})^2\leq (y^2+x^2)(y^2x+x^2y)=2xy(x+y)$
$\leq (x^2+y^2)\sqrt{2(x^2+y^2)}=2\sqrt{2.2}=4$

$\Rightarrow y^2\sqrt{x}+x^2\sqrt{y}\leq 2$

$\Rightarrow F\geq \frac{4}{y^2\sqrt{x}+x^2\sqrt{x}}\geq \frac{4}{2}=2$
Vậy $F_{\min}=2$. Giá trị này đạt tại $x=y=1$

3 tháng 4 2015

vô nghiệm vì x^2 .=o ==.> x^2 +1>o nên (x^2 +1)^2  + (x +3 )^2   >0 vậy pt vô nghiệm

 

3 tháng 4 2015

theo bất đẳng thức : AM-GM. ta có: a+b>= 2căn(ab)​.suy ra.(ab)<=(a+b)2/4.( lưu ý(a+b)bình phương chia 4 nha em.).vây ab=2. theo biểu thức.P=1/a+1/b theo BĐT:AM-GM thì:P>=(1/căn(ab)):dấ = xảy ra thì P đạt GTNN:  P=1/căn2. em nhớ diển đạt = bằng biểu thức toan học nha.

5 tháng 1 2016

Áp dụng BĐT sau:1/a+1/b>=4/(a+b)   =>   P>=4/(a+b)

Mà a+b<=2V2 => 4/(a+b)>=4/2V2=V2

Vậy P >=V2.Dấu = khi va chi khi a=b=V2

28 tháng 5 2017

Số dãy ghế là 15, số ghế mỗi dãy là 24

vậy mà cgx hỏi

29 tháng 5 2017

cách ghi pt sao bạn

4 tháng 4 2015

a) Tứ giác MFEC có: MEC = MFC   => Tứ giác MFEC là tứ giác nội tiếp

(tứ giác có 2 góc kề cùng nhìn 1 cạnh đối diện với 1 góc bằng nhau là tứ giác nội tiếp)

b) Ta có: ABM = ACM (cùng chắn cung AM) ; FCM (hay ACM) = FEM (vì tứ giác MFEC nội tiếp)

=> ABM = FEM      (1)

Tương tự ta có: AMB = ACB (cùng chắn cung AB) ; FCE (hay ACB) = FME (vì tứ giác MFEC nội tiếp)

=> AMB = FME       (2)

Từ (1) và (2) suy ra: Tam giác ABM đồng dạng Tam giác FEM

=> BA / EF = MB / EM              hay            MB.EF = BA.EM

c) Ta có: Tam giác ABM đồng dạng Tam giác FEM

=> MAB = MFE          và        AB / FE = MA / MF

=> MAB = MFE          và       1/2AB / 1/2FE = MA / MF

=> MAB = MFE          và       AP / FQ = MA / MF

=> Tam giác AMP đồng dạng Tam giác FMQ (c.g.c)